Metamath Proof Explorer


Theorem oen0

Description: Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of TakeutiZaring p. 67. (Contributed by NM, 4-Jan-2005)

Ref Expression
Assertion oen0 AOnBOnAA𝑜B

Proof

Step Hyp Ref Expression
1 oveq2 x=A𝑜x=A𝑜
2 1 eleq2d x=A𝑜xA𝑜
3 oveq2 x=yA𝑜x=A𝑜y
4 3 eleq2d x=yA𝑜xA𝑜y
5 oveq2 x=sucyA𝑜x=A𝑜sucy
6 5 eleq2d x=sucyA𝑜xA𝑜sucy
7 oveq2 x=BA𝑜x=A𝑜B
8 7 eleq2d x=BA𝑜xA𝑜B
9 0lt1o 1𝑜
10 oe0 AOnA𝑜=1𝑜
11 9 10 eleqtrrid AOnA𝑜
12 11 adantr AOnAA𝑜
13 oecl AOnyOnA𝑜yOn
14 omordi AOnA𝑜yOnA𝑜yAA𝑜y𝑜A𝑜y𝑜A
15 om0 A𝑜yOnA𝑜y𝑜=
16 15 eleq1d A𝑜yOnA𝑜y𝑜A𝑜y𝑜AA𝑜y𝑜A
17 16 ad2antlr AOnA𝑜yOnA𝑜yA𝑜y𝑜A𝑜y𝑜AA𝑜y𝑜A
18 14 17 sylibd AOnA𝑜yOnA𝑜yAA𝑜y𝑜A
19 13 18 syldanl AOnyOnA𝑜yAA𝑜y𝑜A
20 oesuc AOnyOnA𝑜sucy=A𝑜y𝑜A
21 20 eleq2d AOnyOnA𝑜sucyA𝑜y𝑜A
22 21 adantr AOnyOnA𝑜yA𝑜sucyA𝑜y𝑜A
23 19 22 sylibrd AOnyOnA𝑜yAA𝑜sucy
24 23 exp31 AOnyOnA𝑜yAA𝑜sucy
25 24 com12 yOnAOnA𝑜yAA𝑜sucy
26 25 com34 yOnAOnAA𝑜yA𝑜sucy
27 26 impd yOnAOnAA𝑜yA𝑜sucy
28 0ellim Limxx
29 eqimss2 A𝑜=1𝑜1𝑜A𝑜
30 10 29 syl AOn1𝑜A𝑜
31 oveq2 y=A𝑜y=A𝑜
32 31 sseq2d y=1𝑜A𝑜y1𝑜A𝑜
33 32 rspcev x1𝑜A𝑜yx1𝑜A𝑜y
34 28 30 33 syl2an LimxAOnyx1𝑜A𝑜y
35 ssiun yx1𝑜A𝑜y1𝑜yxA𝑜y
36 34 35 syl LimxAOn1𝑜yxA𝑜y
37 36 adantrr LimxAOnA1𝑜yxA𝑜y
38 vex xV
39 oelim AOnxVLimxAA𝑜x=yxA𝑜y
40 38 39 mpanlr1 AOnLimxAA𝑜x=yxA𝑜y
41 40 anasss AOnLimxAA𝑜x=yxA𝑜y
42 41 an12s LimxAOnAA𝑜x=yxA𝑜y
43 37 42 sseqtrrd LimxAOnA1𝑜A𝑜x
44 limelon xVLimxxOn
45 38 44 mpan LimxxOn
46 oecl AOnxOnA𝑜xOn
47 46 ancoms xOnAOnA𝑜xOn
48 45 47 sylan LimxAOnA𝑜xOn
49 eloni A𝑜xOnOrdA𝑜x
50 ordgt0ge1 OrdA𝑜xA𝑜x1𝑜A𝑜x
51 48 49 50 3syl LimxAOnA𝑜x1𝑜A𝑜x
52 51 adantrr LimxAOnAA𝑜x1𝑜A𝑜x
53 43 52 mpbird LimxAOnAA𝑜x
54 53 ex LimxAOnAA𝑜x
55 54 a1dd LimxAOnAyxA𝑜yA𝑜x
56 2 4 6 8 12 27 55 tfinds3 BOnAOnAA𝑜B
57 56 expd BOnAOnAA𝑜B
58 57 com12 AOnBOnAA𝑜B
59 58 imp31 AOnBOnAA𝑜B