Description: Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of TakeutiZaring p. 67. (Contributed by NM, 4-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | oen0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eleq2d | |
3 | oveq2 | |
|
4 | 3 | eleq2d | |
5 | oveq2 | |
|
6 | 5 | eleq2d | |
7 | oveq2 | |
|
8 | 7 | eleq2d | |
9 | 0lt1o | |
|
10 | oe0 | |
|
11 | 9 10 | eleqtrrid | |
12 | 11 | adantr | |
13 | oecl | |
|
14 | omordi | |
|
15 | om0 | |
|
16 | 15 | eleq1d | |
17 | 16 | ad2antlr | |
18 | 14 17 | sylibd | |
19 | 13 18 | syldanl | |
20 | oesuc | |
|
21 | 20 | eleq2d | |
22 | 21 | adantr | |
23 | 19 22 | sylibrd | |
24 | 23 | exp31 | |
25 | 24 | com12 | |
26 | 25 | com34 | |
27 | 26 | impd | |
28 | 0ellim | |
|
29 | eqimss2 | |
|
30 | 10 29 | syl | |
31 | oveq2 | |
|
32 | 31 | sseq2d | |
33 | 32 | rspcev | |
34 | 28 30 33 | syl2an | |
35 | ssiun | |
|
36 | 34 35 | syl | |
37 | 36 | adantrr | |
38 | vex | |
|
39 | oelim | |
|
40 | 38 39 | mpanlr1 | |
41 | 40 | anasss | |
42 | 41 | an12s | |
43 | 37 42 | sseqtrrd | |
44 | limelon | |
|
45 | 38 44 | mpan | |
46 | oecl | |
|
47 | 46 | ancoms | |
48 | 45 47 | sylan | |
49 | eloni | |
|
50 | ordgt0ge1 | |
|
51 | 48 49 50 | 3syl | |
52 | 51 | adantrr | |
53 | 43 52 | mpbird | |
54 | 53 | ex | |
55 | 54 | a1dd | |
56 | 2 4 6 8 12 27 55 | tfinds3 | |
57 | 56 | expd | |
58 | 57 | com12 | |
59 | 58 | imp31 | |