| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
eleq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
eleq2d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
eleq2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
eleq2d |
|
| 9 |
|
0lt1o |
|
| 10 |
|
oe0 |
|
| 11 |
9 10
|
eleqtrrid |
|
| 12 |
11
|
adantr |
|
| 13 |
|
oecl |
|
| 14 |
|
omordi |
|
| 15 |
|
om0 |
|
| 16 |
15
|
eleq1d |
|
| 17 |
16
|
ad2antlr |
|
| 18 |
14 17
|
sylibd |
|
| 19 |
13 18
|
syldanl |
|
| 20 |
|
oesuc |
|
| 21 |
20
|
eleq2d |
|
| 22 |
21
|
adantr |
|
| 23 |
19 22
|
sylibrd |
|
| 24 |
23
|
exp31 |
|
| 25 |
24
|
com12 |
|
| 26 |
25
|
com34 |
|
| 27 |
26
|
impd |
|
| 28 |
|
0ellim |
|
| 29 |
|
eqimss2 |
|
| 30 |
10 29
|
syl |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
sseq2d |
|
| 33 |
32
|
rspcev |
|
| 34 |
28 30 33
|
syl2an |
|
| 35 |
|
ssiun |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
adantrr |
|
| 38 |
|
vex |
|
| 39 |
|
oelim |
|
| 40 |
38 39
|
mpanlr1 |
|
| 41 |
40
|
anasss |
|
| 42 |
41
|
an12s |
|
| 43 |
37 42
|
sseqtrrd |
|
| 44 |
|
limelon |
|
| 45 |
38 44
|
mpan |
|
| 46 |
|
oecl |
|
| 47 |
46
|
ancoms |
|
| 48 |
45 47
|
sylan |
|
| 49 |
|
eloni |
|
| 50 |
|
ordgt0ge1 |
|
| 51 |
48 49 50
|
3syl |
|
| 52 |
51
|
adantrr |
|
| 53 |
43 52
|
mpbird |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
a1dd |
|
| 56 |
2 4 6 8 12 27 55
|
tfinds3 |
|
| 57 |
56
|
expd |
|
| 58 |
57
|
com12 |
|
| 59 |
58
|
imp31 |
|