Description: The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | oexpnegnz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddz | |
|
2 | odd2np1ALTV | |
|
3 | 1 2 | syl | |
4 | 3 | biimpd | |
5 | 4 | pm2.43i | |
6 | 5 | 3ad2ant3 | |
7 | simpl1 | |
|
8 | simpl2 | |
|
9 | 2z | |
|
10 | simprl | |
|
11 | zmulcl | |
|
12 | 9 10 11 | sylancr | |
13 | 7 8 12 | expclzd | |
14 | 13 7 | mulneg2d | |
15 | sqneg | |
|
16 | 7 15 | syl | |
17 | 16 | oveq1d | |
18 | 7 | negcld | |
19 | 7 8 | negne0d | |
20 | 9 | a1i | |
21 | simpl | |
|
22 | 20 21 | jca | |
23 | 22 | adantl | |
24 | 18 19 23 | jca31 | |
25 | expmulz | |
|
26 | 24 25 | syl | |
27 | 7 8 23 | jca31 | |
28 | expmulz | |
|
29 | 27 28 | syl | |
30 | 17 26 29 | 3eqtr4d | |
31 | 30 | oveq1d | |
32 | 18 19 12 | expp1zd | |
33 | simprr | |
|
34 | 33 | oveq2d | |
35 | 32 34 | eqtr3d | |
36 | 31 35 | eqtr3d | |
37 | 14 36 | eqtr3d | |
38 | 7 8 12 | expp1zd | |
39 | 33 | oveq2d | |
40 | 38 39 | eqtr3d | |
41 | 40 | negeqd | |
42 | 37 41 | eqtr3d | |
43 | 6 42 | rexlimddv | |