Metamath Proof Explorer


Theorem oexpnegnz

Description: The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020)

Ref Expression
Assertion oexpnegnz AA0NOddAN=AN

Proof

Step Hyp Ref Expression
1 oddz NOddN
2 odd2np1ALTV NNOddn2n+1=N
3 1 2 syl NOddNOddn2n+1=N
4 3 biimpd NOddNOddn2n+1=N
5 4 pm2.43i NOddn2n+1=N
6 5 3ad2ant3 AA0NOddn2n+1=N
7 simpl1 AA0NOddn2n+1=NA
8 simpl2 AA0NOddn2n+1=NA0
9 2z 2
10 simprl AA0NOddn2n+1=Nn
11 zmulcl 2n2n
12 9 10 11 sylancr AA0NOddn2n+1=N2n
13 7 8 12 expclzd AA0NOddn2n+1=NA2n
14 13 7 mulneg2d AA0NOddn2n+1=NA2nA=A2nA
15 sqneg AA2=A2
16 7 15 syl AA0NOddn2n+1=NA2=A2
17 16 oveq1d AA0NOddn2n+1=NA2n=A2n
18 7 negcld AA0NOddn2n+1=NA
19 7 8 negne0d AA0NOddn2n+1=NA0
20 9 a1i n2n+1=N2
21 simpl n2n+1=Nn
22 20 21 jca n2n+1=N2n
23 22 adantl AA0NOddn2n+1=N2n
24 18 19 23 jca31 AA0NOddn2n+1=NAA02n
25 expmulz AA02nA2n=A2n
26 24 25 syl AA0NOddn2n+1=NA2n=A2n
27 7 8 23 jca31 AA0NOddn2n+1=NAA02n
28 expmulz AA02nA2n=A2n
29 27 28 syl AA0NOddn2n+1=NA2n=A2n
30 17 26 29 3eqtr4d AA0NOddn2n+1=NA2n=A2n
31 30 oveq1d AA0NOddn2n+1=NA2nA=A2nA
32 18 19 12 expp1zd AA0NOddn2n+1=NA2n+1=A2nA
33 simprr AA0NOddn2n+1=N2n+1=N
34 33 oveq2d AA0NOddn2n+1=NA2n+1=AN
35 32 34 eqtr3d AA0NOddn2n+1=NA2nA=AN
36 31 35 eqtr3d AA0NOddn2n+1=NA2nA=AN
37 14 36 eqtr3d AA0NOddn2n+1=NA2nA=AN
38 7 8 12 expp1zd AA0NOddn2n+1=NA2n+1=A2nA
39 33 oveq2d AA0NOddn2n+1=NA2n+1=AN
40 38 39 eqtr3d AA0NOddn2n+1=NA2nA=AN
41 40 negeqd AA0NOddn2n+1=NA2nA=AN
42 37 41 eqtr3d AA0NOddn2n+1=NAN=AN
43 6 42 rexlimddv AA0NOddAN=AN