Metamath Proof Explorer


Theorem ofdivdiv2

Description: Function analogue of divdiv2 . (Contributed by Steve Rodriguez, 23-Nov-2015)

Ref Expression
Assertion ofdivdiv2 AVF:AG:A0H:A0F÷fG÷fH=F×fH÷fG

Proof

Step Hyp Ref Expression
1 simpll AVF:AG:A0H:A0AV
2 simplr AVF:AG:A0H:A0F:A
3 2 ffnd AVF:AG:A0H:A0FFnA
4 simprl AVF:AG:A0H:A0G:A0
5 4 ffnd AVF:AG:A0H:A0GFnA
6 simprr AVF:AG:A0H:A0H:A0
7 6 ffnd AVF:AG:A0H:A0HFnA
8 inidm AA=A
9 5 7 1 1 8 offn AVF:AG:A0H:A0G÷fHFnA
10 3 7 1 1 8 offn AVF:AG:A0H:A0F×fHFnA
11 10 5 1 1 8 offn AVF:AG:A0H:A0F×fH÷fGFnA
12 eqidd AVF:AG:A0H:A0xAFx=Fx
13 eqidd AVF:AG:A0H:A0xAG÷fHx=G÷fHx
14 ffvelcdm F:AxAFx
15 2 14 sylan AVF:AG:A0H:A0xAFx
16 ffvelcdm G:A0xAGx0
17 eldifsn Gx0GxGx0
18 16 17 sylib G:A0xAGxGx0
19 4 18 sylan AVF:AG:A0H:A0xAGxGx0
20 ffvelcdm H:A0xAHx0
21 eldifsn Hx0HxHx0
22 20 21 sylib H:A0xAHxHx0
23 6 22 sylan AVF:AG:A0H:A0xAHxHx0
24 divdiv2 FxGxGx0HxHx0FxGxHx=FxHxGx
25 15 19 23 24 syl3anc AVF:AG:A0H:A0xAFxGxHx=FxHxGx
26 eqidd AVF:AG:A0H:A0xAGx=Gx
27 eqidd AVF:AG:A0H:A0xAHx=Hx
28 5 7 1 1 8 26 27 ofval AVF:AG:A0H:A0xAG÷fHx=GxHx
29 28 oveq2d AVF:AG:A0H:A0xAFxG÷fHx=FxGxHx
30 3 7 1 1 8 12 27 ofval AVF:AG:A0H:A0xAF×fHx=FxHx
31 10 5 1 1 8 30 26 ofval AVF:AG:A0H:A0xAF×fH÷fGx=FxHxGx
32 25 29 31 3eqtr4d AVF:AG:A0H:A0xAFxG÷fHx=F×fH÷fGx
33 1 3 9 11 12 13 32 offveq AVF:AG:A0H:A0F÷fG÷fH=F×fH÷fG