Description: Function analogue of divdiv2 . (Contributed by Steve Rodriguez, 23-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ofdivdiv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simplr | |
|
3 | 2 | ffnd | |
4 | simprl | |
|
5 | 4 | ffnd | |
6 | simprr | |
|
7 | 6 | ffnd | |
8 | inidm | |
|
9 | 5 7 1 1 8 | offn | |
10 | 3 7 1 1 8 | offn | |
11 | 10 5 1 1 8 | offn | |
12 | eqidd | |
|
13 | eqidd | |
|
14 | ffvelcdm | |
|
15 | 2 14 | sylan | |
16 | ffvelcdm | |
|
17 | eldifsn | |
|
18 | 16 17 | sylib | |
19 | 4 18 | sylan | |
20 | ffvelcdm | |
|
21 | eldifsn | |
|
22 | 20 21 | sylib | |
23 | 6 22 | sylan | |
24 | divdiv2 | |
|
25 | 15 19 23 24 | syl3anc | |
26 | eqidd | |
|
27 | eqidd | |
|
28 | 5 7 1 1 8 26 27 | ofval | |
29 | 28 | oveq2d | |
30 | 3 7 1 1 8 12 27 | ofval | |
31 | 10 5 1 1 8 30 26 | ofval | |
32 | 25 29 31 | 3eqtr4d | |
33 | 1 3 9 11 12 13 32 | offveq | |