| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  | 
						
							| 2 |  | simplr |  | 
						
							| 3 | 2 | ffnd |  | 
						
							| 4 |  | simprl |  | 
						
							| 5 | 4 | ffnd |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 | 6 | ffnd |  | 
						
							| 8 |  | inidm |  | 
						
							| 9 | 5 7 1 1 8 | offn |  | 
						
							| 10 | 3 7 1 1 8 | offn |  | 
						
							| 11 | 10 5 1 1 8 | offn |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 |  | eqidd |  | 
						
							| 14 |  | ffvelcdm |  | 
						
							| 15 | 2 14 | sylan |  | 
						
							| 16 |  | ffvelcdm |  | 
						
							| 17 |  | eldifsn |  | 
						
							| 18 | 16 17 | sylib |  | 
						
							| 19 | 4 18 | sylan |  | 
						
							| 20 |  | ffvelcdm |  | 
						
							| 21 |  | eldifsn |  | 
						
							| 22 | 20 21 | sylib |  | 
						
							| 23 | 6 22 | sylan |  | 
						
							| 24 |  | divdiv2 |  | 
						
							| 25 | 15 19 23 24 | syl3anc |  | 
						
							| 26 |  | eqidd |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 | 5 7 1 1 8 26 27 | ofval |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 3 7 1 1 8 12 27 | ofval |  | 
						
							| 31 | 10 5 1 1 8 30 26 | ofval |  | 
						
							| 32 | 25 29 31 | 3eqtr4d |  | 
						
							| 33 | 1 3 9 11 12 13 32 | offveq |  |