Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
simplr |
|
3 |
2
|
ffnd |
|
4 |
|
simprl |
|
5 |
4
|
ffnd |
|
6 |
|
simprr |
|
7 |
6
|
ffnd |
|
8 |
|
inidm |
|
9 |
5 7 1 1 8
|
offn |
|
10 |
3 7 1 1 8
|
offn |
|
11 |
10 5 1 1 8
|
offn |
|
12 |
|
eqidd |
|
13 |
|
eqidd |
|
14 |
|
ffvelrn |
|
15 |
2 14
|
sylan |
|
16 |
|
ffvelrn |
|
17 |
|
eldifsn |
|
18 |
16 17
|
sylib |
|
19 |
4 18
|
sylan |
|
20 |
|
ffvelrn |
|
21 |
|
eldifsn |
|
22 |
20 21
|
sylib |
|
23 |
6 22
|
sylan |
|
24 |
|
divdiv2 |
|
25 |
15 19 23 24
|
syl3anc |
|
26 |
|
eqidd |
|
27 |
|
eqidd |
|
28 |
5 7 1 1 8 26 27
|
ofval |
|
29 |
28
|
oveq2d |
|
30 |
3 7 1 1 8 12 27
|
ofval |
|
31 |
10 5 1 1 8 30 26
|
ofval |
|
32 |
25 29 31
|
3eqtr4d |
|
33 |
1 3 9 11 12 13 32
|
offveq |
|