| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2uz.1 |  | 
						
							| 2 |  | om2uz.2 |  | 
						
							| 3 |  | eleq2 |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 | 4 | breq2d |  | 
						
							| 6 | 3 5 | imbi12d |  | 
						
							| 7 | 6 | imbi2d |  | 
						
							| 8 |  | eleq2 |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 9 | breq2d |  | 
						
							| 11 | 8 10 | imbi12d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | eleq2 |  | 
						
							| 14 |  | fveq2 |  | 
						
							| 15 | 14 | breq2d |  | 
						
							| 16 | 13 15 | imbi12d |  | 
						
							| 17 | 16 | imbi2d |  | 
						
							| 18 |  | eleq2 |  | 
						
							| 19 |  | fveq2 |  | 
						
							| 20 | 19 | breq2d |  | 
						
							| 21 | 18 20 | imbi12d |  | 
						
							| 22 | 21 | imbi2d |  | 
						
							| 23 |  | noel |  | 
						
							| 24 | 23 | pm2.21i |  | 
						
							| 25 | 24 | a1i |  | 
						
							| 26 |  | id |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 26 28 | orim12d |  | 
						
							| 30 |  | elsuc2g |  | 
						
							| 31 | 30 | bicomd |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 1 2 | om2uzsuci |  | 
						
							| 34 | 33 | breq2d |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 1 2 | om2uzuzi |  | 
						
							| 37 | 1 2 | om2uzuzi |  | 
						
							| 38 |  | eluzelz |  | 
						
							| 39 |  | eluzelz |  | 
						
							| 40 |  | zleltp1 |  | 
						
							| 41 | 38 39 40 | syl2an |  | 
						
							| 42 | 36 37 41 | syl2an |  | 
						
							| 43 | 36 38 | syl |  | 
						
							| 44 | 43 | zred |  | 
						
							| 45 | 37 39 | syl |  | 
						
							| 46 | 45 | zred |  | 
						
							| 47 |  | leloe |  | 
						
							| 48 | 44 46 47 | syl2an |  | 
						
							| 49 | 35 42 48 | 3bitr2rd |  | 
						
							| 50 | 32 49 | imbi12d |  | 
						
							| 51 | 29 50 | imbitrid |  | 
						
							| 52 | 51 | expcom |  | 
						
							| 53 | 52 | a2d |  | 
						
							| 54 | 7 12 17 22 25 53 | finds |  | 
						
							| 55 | 54 | impcom |  |