Description: Less-than relation for G (see om2uz0i ). (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | om2uz.1 | |
|
om2uz.2 | |
||
Assertion | om2uzlti | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | |
|
2 | om2uz.2 | |
|
3 | eleq2 | |
|
4 | fveq2 | |
|
5 | 4 | breq2d | |
6 | 3 5 | imbi12d | |
7 | 6 | imbi2d | |
8 | eleq2 | |
|
9 | fveq2 | |
|
10 | 9 | breq2d | |
11 | 8 10 | imbi12d | |
12 | 11 | imbi2d | |
13 | eleq2 | |
|
14 | fveq2 | |
|
15 | 14 | breq2d | |
16 | 13 15 | imbi12d | |
17 | 16 | imbi2d | |
18 | eleq2 | |
|
19 | fveq2 | |
|
20 | 19 | breq2d | |
21 | 18 20 | imbi12d | |
22 | 21 | imbi2d | |
23 | noel | |
|
24 | 23 | pm2.21i | |
25 | 24 | a1i | |
26 | id | |
|
27 | fveq2 | |
|
28 | 27 | a1i | |
29 | 26 28 | orim12d | |
30 | elsuc2g | |
|
31 | 30 | bicomd | |
32 | 31 | adantl | |
33 | 1 2 | om2uzsuci | |
34 | 33 | breq2d | |
35 | 34 | adantl | |
36 | 1 2 | om2uzuzi | |
37 | 1 2 | om2uzuzi | |
38 | eluzelz | |
|
39 | eluzelz | |
|
40 | zleltp1 | |
|
41 | 38 39 40 | syl2an | |
42 | 36 37 41 | syl2an | |
43 | 36 38 | syl | |
44 | 43 | zred | |
45 | 37 39 | syl | |
46 | 45 | zred | |
47 | leloe | |
|
48 | 44 46 47 | syl2an | |
49 | 35 42 48 | 3bitr2rd | |
50 | 32 49 | imbi12d | |
51 | 29 50 | imbitrid | |
52 | 51 | expcom | |
53 | 52 | a2d | |
54 | 7 12 17 22 25 53 | finds | |
55 | 54 | impcom | |