Metamath Proof Explorer


Theorem omcl3g

Description: Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025)

Ref Expression
Assertion omcl3g ACBCC3𝑜C=ω𝑜ω𝑜DDOnA𝑜BC

Proof

Step Hyp Ref Expression
1 eltpi C1𝑜2𝑜C=C=1𝑜C=2𝑜
2 df-3o 3𝑜=suc2𝑜
3 df2o3 2𝑜=1𝑜
4 3 uneq1i 2𝑜2𝑜=1𝑜2𝑜
5 df-suc suc2𝑜=2𝑜2𝑜
6 df-tp 1𝑜2𝑜=1𝑜2𝑜
7 4 5 6 3eqtr4i suc2𝑜=1𝑜2𝑜
8 2 7 eqtri 3𝑜=1𝑜2𝑜
9 1 8 eleq2s C3𝑜C=C=1𝑜C=2𝑜
10 orc C=C=C=ω𝑜ω𝑜CCOn
11 omcl2 ACBCC=C=ω𝑜ω𝑜CCOnA𝑜BC
12 10 11 sylan2 ACBCC=A𝑜BC
13 12 ex ACBCC=A𝑜BC
14 el1o A1𝑜A=
15 el1o B1𝑜B=
16 oveq12 A=B=A𝑜B=𝑜
17 0elon On
18 om0 On𝑜=
19 17 18 ax-mp 𝑜=
20 0lt1o 1𝑜
21 19 20 eqeltri 𝑜1𝑜
22 16 21 eqeltrdi A=B=A𝑜B1𝑜
23 14 15 22 syl2anb A1𝑜B1𝑜A𝑜B1𝑜
24 23 a1i C=1𝑜A1𝑜B1𝑜A𝑜B1𝑜
25 eleq2 C=1𝑜ACA1𝑜
26 eleq2 C=1𝑜BCB1𝑜
27 25 26 anbi12d C=1𝑜ACBCA1𝑜B1𝑜
28 eleq2 C=1𝑜A𝑜BCA𝑜B1𝑜
29 24 27 28 3imtr4d C=1𝑜ACBCA𝑜BC
30 29 com12 ACBCC=1𝑜A𝑜BC
31 elpri A1𝑜A=A=1𝑜
32 31 3 eleq2s A2𝑜A=A=1𝑜
33 elpri B1𝑜B=B=1𝑜
34 33 3 eleq2s B2𝑜B=B=1𝑜
35 0ex V
36 35 prid1 1𝑜
37 36 19 3 3eltr4i 𝑜2𝑜
38 16 37 eqeltrdi A=B=A𝑜B2𝑜
39 oveq12 A=1𝑜B=A𝑜B=1𝑜𝑜
40 1on 1𝑜On
41 om0 1𝑜On1𝑜𝑜=
42 40 41 ax-mp 1𝑜𝑜=
43 36 42 3 3eltr4i 1𝑜𝑜2𝑜
44 39 43 eqeltrdi A=1𝑜B=A𝑜B2𝑜
45 oveq12 A=B=1𝑜A𝑜B=𝑜1𝑜
46 om0r 1𝑜On𝑜1𝑜=
47 40 46 ax-mp 𝑜1𝑜=
48 36 47 3 3eltr4i 𝑜1𝑜2𝑜
49 45 48 eqeltrdi A=B=1𝑜A𝑜B2𝑜
50 oveq12 A=1𝑜B=1𝑜A𝑜B=1𝑜𝑜1𝑜
51 1oex 1𝑜V
52 51 prid2 1𝑜1𝑜
53 om1 1𝑜On1𝑜𝑜1𝑜=1𝑜
54 40 53 ax-mp 1𝑜𝑜1𝑜=1𝑜
55 52 54 3 3eltr4i 1𝑜𝑜1𝑜2𝑜
56 50 55 eqeltrdi A=1𝑜B=1𝑜A𝑜B2𝑜
57 38 44 49 56 ccase A=A=1𝑜B=B=1𝑜A𝑜B2𝑜
58 32 34 57 syl2an A2𝑜B2𝑜A𝑜B2𝑜
59 58 a1i C=2𝑜A2𝑜B2𝑜A𝑜B2𝑜
60 eleq2 C=2𝑜ACA2𝑜
61 eleq2 C=2𝑜BCB2𝑜
62 60 61 anbi12d C=2𝑜ACBCA2𝑜B2𝑜
63 eleq2 C=2𝑜A𝑜BCA𝑜B2𝑜
64 59 62 63 3imtr4d C=2𝑜ACBCA𝑜BC
65 64 com12 ACBCC=2𝑜A𝑜BC
66 13 30 65 3jaod ACBCC=C=1𝑜C=2𝑜A𝑜BC
67 9 66 syl5 ACBCC3𝑜A𝑜BC
68 olc C=ω𝑜ω𝑜DDOnC=C=ω𝑜ω𝑜DDOn
69 omcl2 ACBCC=C=ω𝑜ω𝑜DDOnA𝑜BC
70 68 69 sylan2 ACBCC=ω𝑜ω𝑜DDOnA𝑜BC
71 70 ex ACBCC=ω𝑜ω𝑜DDOnA𝑜BC
72 67 71 jaod ACBCC3𝑜C=ω𝑜ω𝑜DDOnA𝑜BC
73 72 imp ACBCC3𝑜C=ω𝑜ω𝑜DDOnA𝑜BC