Description: Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | omcl3g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpi | |
|
2 | df-3o | |
|
3 | df2o3 | |
|
4 | 3 | uneq1i | |
5 | df-suc | |
|
6 | df-tp | |
|
7 | 4 5 6 | 3eqtr4i | |
8 | 2 7 | eqtri | |
9 | 1 8 | eleq2s | |
10 | orc | |
|
11 | omcl2 | |
|
12 | 10 11 | sylan2 | |
13 | 12 | ex | |
14 | el1o | |
|
15 | el1o | |
|
16 | oveq12 | |
|
17 | 0elon | |
|
18 | om0 | |
|
19 | 17 18 | ax-mp | |
20 | 0lt1o | |
|
21 | 19 20 | eqeltri | |
22 | 16 21 | eqeltrdi | |
23 | 14 15 22 | syl2anb | |
24 | 23 | a1i | |
25 | eleq2 | |
|
26 | eleq2 | |
|
27 | 25 26 | anbi12d | |
28 | eleq2 | |
|
29 | 24 27 28 | 3imtr4d | |
30 | 29 | com12 | |
31 | elpri | |
|
32 | 31 3 | eleq2s | |
33 | elpri | |
|
34 | 33 3 | eleq2s | |
35 | 0ex | |
|
36 | 35 | prid1 | |
37 | 36 19 3 | 3eltr4i | |
38 | 16 37 | eqeltrdi | |
39 | oveq12 | |
|
40 | 1on | |
|
41 | om0 | |
|
42 | 40 41 | ax-mp | |
43 | 36 42 3 | 3eltr4i | |
44 | 39 43 | eqeltrdi | |
45 | oveq12 | |
|
46 | om0r | |
|
47 | 40 46 | ax-mp | |
48 | 36 47 3 | 3eltr4i | |
49 | 45 48 | eqeltrdi | |
50 | oveq12 | |
|
51 | 1oex | |
|
52 | 51 | prid2 | |
53 | om1 | |
|
54 | 40 53 | ax-mp | |
55 | 52 54 3 | 3eltr4i | |
56 | 50 55 | eqeltrdi | |
57 | 38 44 49 56 | ccase | |
58 | 32 34 57 | syl2an | |
59 | 58 | a1i | |
60 | eleq2 | |
|
61 | eleq2 | |
|
62 | 60 61 | anbi12d | |
63 | eleq2 | |
|
64 | 59 62 63 | 3imtr4d | |
65 | 64 | com12 | |
66 | 13 30 65 | 3jaod | |
67 | 9 66 | syl5 | |
68 | olc | |
|
69 | omcl2 | |
|
70 | 68 69 | sylan2 | |
71 | 70 | ex | |
72 | 67 71 | jaod | |
73 | 72 | imp | |