Metamath Proof Explorer


Theorem omeunile

Description: The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeunile.o φOOutMeas
omeunile.x X=domO
omeunile.y φY𝒫X
omeunile.ct φYω
Assertion omeunile φOYsum^OY

Proof

Step Hyp Ref Expression
1 omeunile.o φOOutMeas
2 omeunile.x X=domO
3 omeunile.y φY𝒫X
4 omeunile.ct φYω
5 1 2 unidmex φXV
6 5 pwexd φ𝒫XV
7 ssexg Y𝒫X𝒫XVYV
8 3 6 7 syl2anc φYV
9 elpwg YVY𝒫𝒫XY𝒫X
10 8 9 syl φY𝒫𝒫XY𝒫X
11 3 10 mpbird φY𝒫𝒫X
12 omedm OOutMeasdomO=𝒫domO
13 1 12 syl φdomO=𝒫domO
14 2 pweqi 𝒫X=𝒫domO
15 14 eqcomi 𝒫domO=𝒫X
16 15 a1i φ𝒫domO=𝒫X
17 13 16 eqtr2d φ𝒫X=domO
18 17 pweqd φ𝒫𝒫X=𝒫domO
19 11 18 eleqtrd φY𝒫domO
20 isome OOutMeasOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOx𝒫yOxOyy𝒫domOyωOysum^Oy
21 1 20 syl φOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOx𝒫yOxOyy𝒫domOyωOysum^Oy
22 1 21 mpbid φO:domO0+∞domO=𝒫domOO=0y𝒫domOx𝒫yOxOyy𝒫domOyωOysum^Oy
23 22 simprd φy𝒫domOyωOysum^Oy
24 breq1 y=YyωYω
25 unieq y=Yy=Y
26 25 fveq2d y=YOy=OY
27 reseq2 y=YOy=OY
28 27 fveq2d y=Ysum^Oy=sum^OY
29 26 28 breq12d y=YOysum^OyOYsum^OY
30 24 29 imbi12d y=YyωOysum^OyYωOYsum^OY
31 30 rspcva Y𝒫domOy𝒫domOyωOysum^OyYωOYsum^OY
32 19 23 31 syl2anc φYωOYsum^OY
33 4 32 mpd φOYsum^OY