Metamath Proof Explorer


Theorem omordi

Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63. Lemma 3.15 of Schloeder p. 9. (Contributed by NM, 14-Dec-2004)

Ref Expression
Assertion omordi BOnCOnCABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 onelon BOnABAOn
2 1 ex BOnABAOn
3 eleq2 x=AxA
4 oveq2 x=C𝑜x=C𝑜
5 4 eleq2d x=C𝑜AC𝑜xC𝑜AC𝑜
6 3 5 imbi12d x=AxC𝑜AC𝑜xAC𝑜AC𝑜
7 eleq2 x=yAxAy
8 oveq2 x=yC𝑜x=C𝑜y
9 8 eleq2d x=yC𝑜AC𝑜xC𝑜AC𝑜y
10 7 9 imbi12d x=yAxC𝑜AC𝑜xAyC𝑜AC𝑜y
11 eleq2 x=sucyAxAsucy
12 oveq2 x=sucyC𝑜x=C𝑜sucy
13 12 eleq2d x=sucyC𝑜AC𝑜xC𝑜AC𝑜sucy
14 11 13 imbi12d x=sucyAxC𝑜AC𝑜xAsucyC𝑜AC𝑜sucy
15 eleq2 x=BAxAB
16 oveq2 x=BC𝑜x=C𝑜B
17 16 eleq2d x=BC𝑜AC𝑜xC𝑜AC𝑜B
18 15 17 imbi12d x=BAxC𝑜AC𝑜xABC𝑜AC𝑜B
19 noel ¬A
20 19 pm2.21i AC𝑜AC𝑜
21 20 a1i AOnCOnCAC𝑜AC𝑜
22 elsuci AsucyAyA=y
23 omcl COnyOnC𝑜yOn
24 simpl COnyOnCOn
25 23 24 jca COnyOnC𝑜yOnCOn
26 oaword1 C𝑜yOnCOnC𝑜yC𝑜y+𝑜C
27 26 sseld C𝑜yOnCOnC𝑜AC𝑜yC𝑜AC𝑜y+𝑜C
28 27 imim2d C𝑜yOnCOnAyC𝑜AC𝑜yAyC𝑜AC𝑜y+𝑜C
29 28 imp C𝑜yOnCOnAyC𝑜AC𝑜yAyC𝑜AC𝑜y+𝑜C
30 29 adantrl C𝑜yOnCOnCAyC𝑜AC𝑜yAyC𝑜AC𝑜y+𝑜C
31 oaord1 C𝑜yOnCOnCC𝑜yC𝑜y+𝑜C
32 31 biimpa C𝑜yOnCOnCC𝑜yC𝑜y+𝑜C
33 oveq2 A=yC𝑜A=C𝑜y
34 33 eleq1d A=yC𝑜AC𝑜y+𝑜CC𝑜yC𝑜y+𝑜C
35 32 34 syl5ibrcom C𝑜yOnCOnCA=yC𝑜AC𝑜y+𝑜C
36 35 adantrr C𝑜yOnCOnCAyC𝑜AC𝑜yA=yC𝑜AC𝑜y+𝑜C
37 30 36 jaod C𝑜yOnCOnCAyC𝑜AC𝑜yAyA=yC𝑜AC𝑜y+𝑜C
38 25 37 sylan COnyOnCAyC𝑜AC𝑜yAyA=yC𝑜AC𝑜y+𝑜C
39 22 38 syl5 COnyOnCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜y+𝑜C
40 omsuc COnyOnC𝑜sucy=C𝑜y+𝑜C
41 40 eleq2d COnyOnC𝑜AC𝑜sucyC𝑜AC𝑜y+𝑜C
42 41 adantr COnyOnCAyC𝑜AC𝑜yC𝑜AC𝑜sucyC𝑜AC𝑜y+𝑜C
43 39 42 sylibrd COnyOnCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
44 43 exp43 COnyOnCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
45 44 com12 yOnCOnCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
46 45 adantld yOnAOnCOnCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
47 46 impd yOnAOnCOnCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
48 id COnLimxCOnLimx
49 48 ad2ant2r COnAOnLimxCCOnLimx
50 limsuc LimxAxsucAx
51 50 biimpa LimxAxsucAx
52 oveq2 y=sucAC𝑜y=C𝑜sucA
53 52 ssiun2s sucAxC𝑜sucAyxC𝑜y
54 51 53 syl LimxAxC𝑜sucAyxC𝑜y
55 54 adantll COnLimxAxC𝑜sucAyxC𝑜y
56 vex xV
57 omlim COnxVLimxC𝑜x=yxC𝑜y
58 56 57 mpanr1 COnLimxC𝑜x=yxC𝑜y
59 58 adantr COnLimxAxC𝑜x=yxC𝑜y
60 55 59 sseqtrrd COnLimxAxC𝑜sucAC𝑜x
61 49 60 sylan COnAOnLimxCAxC𝑜sucAC𝑜x
62 omcl COnAOnC𝑜AOn
63 oaord1 C𝑜AOnCOnCC𝑜AC𝑜A+𝑜C
64 62 63 sylan COnAOnCOnCC𝑜AC𝑜A+𝑜C
65 64 anabss1 COnAOnCC𝑜AC𝑜A+𝑜C
66 65 biimpa COnAOnCC𝑜AC𝑜A+𝑜C
67 omsuc COnAOnC𝑜sucA=C𝑜A+𝑜C
68 67 adantr COnAOnCC𝑜sucA=C𝑜A+𝑜C
69 66 68 eleqtrrd COnAOnCC𝑜AC𝑜sucA
70 69 adantrl COnAOnLimxCC𝑜AC𝑜sucA
71 70 adantr COnAOnLimxCAxC𝑜AC𝑜sucA
72 61 71 sseldd COnAOnLimxCAxC𝑜AC𝑜x
73 72 exp53 COnAOnLimxCAxC𝑜AC𝑜x
74 73 com13 LimxAOnCOnCAxC𝑜AC𝑜x
75 74 imp4c LimxAOnCOnCAxC𝑜AC𝑜x
76 75 a1dd LimxAOnCOnCyxAyC𝑜AC𝑜yAxC𝑜AC𝑜x
77 6 10 14 18 21 47 76 tfinds3 BOnAOnCOnCABC𝑜AC𝑜B
78 77 com23 BOnABAOnCOnCC𝑜AC𝑜B
79 78 exp4a BOnABAOnCOnCC𝑜AC𝑜B
80 79 exp4a BOnABAOnCOnCC𝑜AC𝑜B
81 2 80 mpdd BOnABCOnCC𝑜AC𝑜B
82 81 com34 BOnABCCOnC𝑜AC𝑜B
83 82 com24 BOnCOnCABC𝑜AC𝑜B
84 83 imp31 BOnCOnCABC𝑜AC𝑜B