Description: Lemma for omsmo . (Contributed by NM, 30-Nov-2003) (Revised by David Abernethy, 1-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | omsmolem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |
|
2 | fveq2 | |
|
3 | 2 | eleq2d | |
4 | 1 3 | imbi12d | |
5 | eleq2 | |
|
6 | fveq2 | |
|
7 | 6 | eleq2d | |
8 | 5 7 | imbi12d | |
9 | eleq2 | |
|
10 | fveq2 | |
|
11 | 10 | eleq2d | |
12 | 9 11 | imbi12d | |
13 | noel | |
|
14 | 13 | pm2.21i | |
15 | 14 | a1i | |
16 | vex | |
|
17 | 16 | elsuc | |
18 | fveq2 | |
|
19 | suceq | |
|
20 | 19 | fveq2d | |
21 | 18 20 | eleq12d | |
22 | 21 | rspccva | |
23 | 22 | adantll | |
24 | peano2b | |
|
25 | ffvelcdm | |
|
26 | 24 25 | sylan2b | |
27 | ssel | |
|
28 | ontr1 | |
|
29 | 28 | expcomd | |
30 | 26 27 29 | syl56 | |
31 | 30 | impl | |
32 | 31 | adantlr | |
33 | 23 32 | mpd | |
34 | 33 | imim2d | |
35 | 34 | imp | |
36 | fveq2 | |
|
37 | 36 | eleq1d | |
38 | 22 37 | syl5ibrcom | |
39 | 38 | ad4ant23 | |
40 | 35 39 | jaod | |
41 | 17 40 | biimtrid | |
42 | 41 | exp31 | |
43 | 42 | com12 | |
44 | 4 8 12 15 43 | finds2 | |