| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onnbtwn |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
|
suceq |
|
| 4 |
3
|
eqeq1d |
|
| 5 |
4
|
3ad2ant3 |
|
| 6 |
|
ovex |
|
| 7 |
6
|
sucid |
|
| 8 |
|
eleq2 |
|
| 9 |
7 8
|
mpbii |
|
| 10 |
|
2on |
|
| 11 |
|
omord |
|
| 12 |
10 11
|
mp3an3 |
|
| 13 |
|
simpl |
|
| 14 |
12 13
|
biimtrrdi |
|
| 15 |
9 14
|
syl5 |
|
| 16 |
|
simpr |
|
| 17 |
|
omcl |
|
| 18 |
10 17
|
mpan |
|
| 19 |
|
oa1suc |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
1oex |
|
| 22 |
21
|
sucid |
|
| 23 |
|
df-2o |
|
| 24 |
22 23
|
eleqtrri |
|
| 25 |
|
1on |
|
| 26 |
|
oaord |
|
| 27 |
25 10 18 26
|
mp3an12i |
|
| 28 |
24 27
|
mpbii |
|
| 29 |
|
omsuc |
|
| 30 |
10 29
|
mpan |
|
| 31 |
28 30
|
eleqtrrd |
|
| 32 |
20 31
|
eqeltrrd |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
16 33
|
eqeltrrd |
|
| 35 |
|
onsuc |
|
| 36 |
|
omord |
|
| 37 |
10 36
|
mp3an3 |
|
| 38 |
35 37
|
sylan2 |
|
| 39 |
38
|
ancoms |
|
| 40 |
39
|
adantr |
|
| 41 |
34 40
|
mpbird |
|
| 42 |
41
|
simpld |
|
| 43 |
42
|
ex |
|
| 44 |
15 43
|
jcad |
|
| 45 |
44
|
3adant3 |
|
| 46 |
5 45
|
sylbid |
|
| 47 |
2 46
|
mtod |
|