Metamath Proof Explorer


Theorem onsupnmax

Description: If the union of a class of ordinals is not the maximum element of that class, then the union is a limit ordinal or empty. But this isn't a biconditional since A could be a non-empty set where a limit ordinal or the empty set happens to be the largest element. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupnmax AOn¬AAA=A

Proof

Step Hyp Ref Expression
1 rexnal xA¬yAxy¬xAyAxy
2 ralnex yA¬xy¬yAxy
3 2 rexbii xAyA¬xyxA¬yAxy
4 ssunib AAxAyAxy
5 4 notbii ¬AA¬xAyAxy
6 1 3 5 3bitr4ri ¬AAxAyA¬xy
7 simpll AOnAOnxAAOn
8 7 sselda AOnAOnxAyAyOn
9 simpl AOnAOnAOn
10 9 sselda AOnAOnxAxOn
11 10 adantr AOnAOnxAyAxOn
12 ontri1 yOnxOnyx¬xy
13 8 11 12 syl2anc AOnAOnxAyAyx¬xy
14 13 ralbidva AOnAOnxAyAyxyA¬xy
15 14 rexbidva AOnAOnxAyAyxxAyA¬xy
16 6 15 bitr4id AOnAOn¬AAxAyAyx
17 unielid AAxAyAyx
18 17 a1i AOnAOnAAxAyAyx
19 18 biimprd AOnAOnxAyAyxAA
20 16 19 sylbid AOnAOn¬AAAA
21 20 con1d AOnAOn¬AAAA
22 uniss AAAA
23 21 22 syl6 AOnAOn¬AAAA
24 ssorduni AOnOrdA
25 orduniss OrdAAA
26 24 25 syl AOnAA
27 26 biantrud AOnAAAAAA
28 eqss A=AAAAA
29 27 28 bitr4di AOnAAA=A
30 29 adantr AOnAOnAAA=A
31 23 30 sylibd AOnAOn¬AAA=A
32 31 ex AOnAOn¬AAA=A
33 unon On=On
34 33 a1i A=OnOn=On
35 unieq A=OnA=On
36 id A=OnA=On
37 34 35 36 3eqtr4rd A=OnA=A
38 37 a1i13 AOnA=On¬AAA=A
39 ordeleqon OrdAAOnA=On
40 24 39 sylib AOnAOnA=On
41 32 38 40 mpjaod AOn¬AAA=A