Description: If the union of a class of ordinals is not the maximum element of that class, then the union is a limit ordinal or empty. But this isn't a biconditional since A could be a non-empty set where a limit ordinal or the empty set happens to be the largest element. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupnmax | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnal | |
|
2 | ralnex | |
|
3 | 2 | rexbii | |
4 | ssunib | |
|
5 | 4 | notbii | |
6 | 1 3 5 | 3bitr4ri | |
7 | simpll | |
|
8 | 7 | sselda | |
9 | simpl | |
|
10 | 9 | sselda | |
11 | 10 | adantr | |
12 | ontri1 | |
|
13 | 8 11 12 | syl2anc | |
14 | 13 | ralbidva | |
15 | 14 | rexbidva | |
16 | 6 15 | bitr4id | |
17 | unielid | |
|
18 | 17 | a1i | |
19 | 18 | biimprd | |
20 | 16 19 | sylbid | |
21 | 20 | con1d | |
22 | uniss | |
|
23 | 21 22 | syl6 | |
24 | ssorduni | |
|
25 | orduniss | |
|
26 | 24 25 | syl | |
27 | 26 | biantrud | |
28 | eqss | |
|
29 | 27 28 | bitr4di | |
30 | 29 | adantr | |
31 | 23 30 | sylibd | |
32 | 31 | ex | |
33 | unon | |
|
34 | 33 | a1i | |
35 | unieq | |
|
36 | id | |
|
37 | 34 35 36 | 3eqtr4rd | |
38 | 37 | a1i13 | |
39 | ordeleqon | |
|
40 | 24 39 | sylib | |
41 | 32 38 40 | mpjaod | |