Metamath Proof Explorer


Theorem opnbnd

Description: A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009)

Ref Expression
Hypothesis opnbnd.1 X=J
Assertion opnbnd JTopAXAJAclsJAclsJXA=

Proof

Step Hyp Ref Expression
1 opnbnd.1 X=J
2 disjdif intJAclsJAintJA=
3 2 a1i JTopAXintJAclsJAintJA=
4 ineq1 intJA=AintJAclsJAintJA=AclsJAintJA
5 4 eqeq1d intJA=AintJAclsJAintJA=AclsJAintJA=
6 3 5 syl5ibcom JTopAXintJA=AAclsJAintJA=
7 1 ntrss2 JTopAXintJAA
8 7 adantr JTopAXAclsJAintJA=intJAA
9 inssdif0 AclsJAintJAAclsJAintJA=
10 1 sscls JTopAXAclsJA
11 df-ss AclsJAAclsJA=A
12 10 11 sylib JTopAXAclsJA=A
13 12 eqcomd JTopAXA=AclsJA
14 eqimss A=AclsJAAAclsJA
15 13 14 syl JTopAXAAclsJA
16 sstr AAclsJAAclsJAintJAAintJA
17 15 16 sylan JTopAXAclsJAintJAAintJA
18 9 17 sylan2br JTopAXAclsJAintJA=AintJA
19 8 18 eqssd JTopAXAclsJAintJA=intJA=A
20 19 ex JTopAXAclsJAintJA=intJA=A
21 6 20 impbid JTopAXintJA=AAclsJAintJA=
22 1 isopn3 JTopAXAJintJA=A
23 1 topbnd JTopAXclsJAclsJXA=clsJAintJA
24 23 ineq2d JTopAXAclsJAclsJXA=AclsJAintJA
25 24 eqeq1d JTopAXAclsJAclsJXA=AclsJAintJA=
26 21 22 25 3bitr4d JTopAXAJAclsJAclsJXA=