Description: A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opnbnd.1 | |
|
Assertion | opnbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnbnd.1 | |
|
2 | disjdif | |
|
3 | 2 | a1i | |
4 | ineq1 | |
|
5 | 4 | eqeq1d | |
6 | 3 5 | syl5ibcom | |
7 | 1 | ntrss2 | |
8 | 7 | adantr | |
9 | inssdif0 | |
|
10 | 1 | sscls | |
11 | df-ss | |
|
12 | 10 11 | sylib | |
13 | 12 | eqcomd | |
14 | eqimss | |
|
15 | 13 14 | syl | |
16 | sstr | |
|
17 | 15 16 | sylan | |
18 | 9 17 | sylan2br | |
19 | 8 18 | eqssd | |
20 | 19 | ex | |
21 | 6 20 | impbid | |
22 | 1 | isopn3 | |
23 | 1 | topbnd | |
24 | 23 | ineq2d | |
25 | 24 | eqeq1d | |
26 | 21 22 25 | 3bitr4d | |