| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|
| 2 |
|
opprqus.o |
|
| 3 |
|
opprqus.q |
|
| 4 |
|
opprqus1r.r |
|
| 5 |
|
opprqus1r.i |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
6 7
|
oppr1 |
|
| 9 |
1 2 3 4 5
|
opprqus1r |
|
| 10 |
8 9
|
eqtrid |
|
| 11 |
|
eqid |
|
| 12 |
6 11
|
oppr0 |
|
| 13 |
5
|
2idllidld |
|
| 14 |
|
lidlnsg |
|
| 15 |
4 13 14
|
syl2anc |
|
| 16 |
1 2 3 15
|
opprqus0g |
|
| 17 |
12 16
|
eqtrid |
|
| 18 |
10 17
|
neeq12d |
|
| 19 |
|
eqid |
|
| 20 |
6 19
|
opprbas |
|
| 21 |
|
eqid |
|
| 22 |
1 21
|
lidlss |
|
| 23 |
13 22
|
syl |
|
| 24 |
1 2 3 4 23
|
opprqusbas |
|
| 25 |
20 24
|
eqtrid |
|
| 26 |
17
|
sneqd |
|
| 27 |
25 26
|
difeq12d |
|
| 28 |
25
|
adantr |
|
| 29 |
4
|
ad2antrr |
|
| 30 |
5
|
ad2antrr |
|
| 31 |
|
simplr |
|
| 32 |
31
|
eldifad |
|
| 33 |
|
simpr |
|
| 34 |
1 2 3 29 30 19 32 33
|
opprqusmulr |
|
| 35 |
10
|
ad2antrr |
|
| 36 |
34 35
|
eqeq12d |
|
| 37 |
1 2 3 29 30 19 33 32
|
opprqusmulr |
|
| 38 |
37 35
|
eqeq12d |
|
| 39 |
36 38
|
anbi12d |
|
| 40 |
28 39
|
rexeqbidva |
|
| 41 |
27 40
|
raleqbidva |
|
| 42 |
18 41
|
anbi12d |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
44 6
|
opprunit |
|
| 46 |
|
eqid |
|
| 47 |
3 46
|
qusring |
|
| 48 |
4 5 47
|
syl2anc |
|
| 49 |
6
|
opprring |
|
| 50 |
48 49
|
syl |
|
| 51 |
20 12 8 43 45 50
|
isdrng4 |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
2
|
opprring |
|
| 58 |
4 57
|
syl |
|
| 59 |
2 4
|
oppr2idl |
|
| 60 |
5 59
|
eleqtrd |
|
| 61 |
|
eqid |
|
| 62 |
|
eqid |
|
| 63 |
61 62
|
qusring |
|
| 64 |
58 60 63
|
syl2anc |
|
| 65 |
52 53 54 55 56 64
|
isdrng4 |
|
| 66 |
42 51 65
|
3bitr4d |
|