Metamath Proof Explorer


Theorem opsrle

Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses opsrle.s S=ImPwSerR
opsrle.o O=IordPwSerRT
opsrle.b B=BaseS
opsrle.q <˙=<R
opsrle.c C=T<bagI
opsrle.d D=h0I|h-1Fin
opsrle.l ˙=O
opsrle.t φTI×I
Assertion opsrle φ˙=xy|xyBzDxz<˙yzwDwCzxw=ywx=y

Proof

Step Hyp Ref Expression
1 opsrle.s S=ImPwSerR
2 opsrle.o O=IordPwSerRT
3 opsrle.b B=BaseS
4 opsrle.q <˙=<R
5 opsrle.c C=T<bagI
6 opsrle.d D=h0I|h-1Fin
7 opsrle.l ˙=O
8 opsrle.t φTI×I
9 eqid xy|xyBzDxz<˙yzwDwCzxw=ywx=y=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
10 simprl φIVRVIV
11 simprr φIVRVRV
12 8 adantr φIVRVTI×I
13 1 2 3 4 5 6 9 10 11 12 opsrval φIVRVO=SsSetndxxy|xyBzDxz<˙yzwDwCzxw=ywx=y
14 13 fveq2d φIVRVO=SsSetndxxy|xyBzDxz<˙yzwDwCzxw=ywx=y
15 1 ovexi SV
16 3 fvexi BV
17 16 16 xpex B×BV
18 vex xV
19 vex yV
20 18 19 prss xByBxyB
21 20 anbi1i xByBzDxz<˙yzwDwCzxw=ywx=yxyBzDxz<˙yzwDwCzxw=ywx=y
22 21 opabbii xy|xByBzDxz<˙yzwDwCzxw=ywx=y=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
23 opabssxp xy|xByBzDxz<˙yzwDwCzxw=ywx=yB×B
24 22 23 eqsstrri xy|xyBzDxz<˙yzwDwCzxw=ywx=yB×B
25 17 24 ssexi xy|xyBzDxz<˙yzwDwCzxw=ywx=yV
26 pleid le=Slotndx
27 26 setsid SVxy|xyBzDxz<˙yzwDwCzxw=ywx=yVxy|xyBzDxz<˙yzwDwCzxw=ywx=y=SsSetndxxy|xyBzDxz<˙yzwDwCzxw=ywx=y
28 15 25 27 mp2an xy|xyBzDxz<˙yzwDwCzxw=ywx=y=SsSetndxxy|xyBzDxz<˙yzwDwCzxw=ywx=y
29 14 7 28 3eqtr4g φIVRV˙=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
30 reldmopsr ReldomordPwSer
31 30 ovprc ¬IVRVIordPwSerR=
32 31 adantl φ¬IVRVIordPwSerR=
33 32 fveq1d φ¬IVRVIordPwSerRT=T
34 2 33 eqtrid φ¬IVRVO=T
35 0fv T=
36 34 35 eqtrdi φ¬IVRVO=
37 36 fveq2d φ¬IVRVO=
38 26 str0 =
39 37 7 38 3eqtr4g φ¬IVRV˙=
40 reldmpsr ReldommPwSer
41 40 ovprc ¬IVRVImPwSerR=
42 41 adantl φ¬IVRVImPwSerR=
43 1 42 eqtrid φ¬IVRVS=
44 43 fveq2d φ¬IVRVBaseS=Base
45 base0 =Base
46 44 3 45 3eqtr4g φ¬IVRVB=
47 46 xpeq2d φ¬IVRVB×B=B×
48 xp0 B×=
49 47 48 eqtrdi φ¬IVRVB×B=
50 sseq0 xy|xyBzDxz<˙yzwDwCzxw=ywx=yB×BB×B=xy|xyBzDxz<˙yzwDwCzxw=ywx=y=
51 24 49 50 sylancr φ¬IVRVxy|xyBzDxz<˙yzwDwCzxw=ywx=y=
52 39 51 eqtr4d φ¬IVRV˙=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
53 29 52 pm2.61dan φ˙=xy|xyBzDxz<˙yzwDwCzxw=ywx=y