Description: Lemma for ostth . Refine ostthlem1 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 20-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qrng.q | |
|
qabsabv.a | |
||
ostthlem1.1 | |
||
ostthlem1.2 | |
||
ostthlem2.3 | |
||
Assertion | ostthlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | |
|
2 | qabsabv.a | |
|
3 | ostthlem1.1 | |
|
4 | ostthlem1.2 | |
|
5 | ostthlem2.3 | |
|
6 | eluz2nn | |
|
7 | fveq2 | |
|
8 | fveq2 | |
|
9 | 7 8 | eqeq12d | |
10 | 9 | imbi2d | |
11 | fveq2 | |
|
12 | fveq2 | |
|
13 | 11 12 | eqeq12d | |
14 | 13 | imbi2d | |
15 | fveq2 | |
|
16 | fveq2 | |
|
17 | 15 16 | eqeq12d | |
18 | 17 | imbi2d | |
19 | fveq2 | |
|
20 | fveq2 | |
|
21 | 19 20 | eqeq12d | |
22 | 21 | imbi2d | |
23 | fveq2 | |
|
24 | fveq2 | |
|
25 | 23 24 | eqeq12d | |
26 | 25 | imbi2d | |
27 | ax-1ne0 | |
|
28 | 1 | qrng1 | |
29 | 1 | qrng0 | |
30 | 2 28 29 | abv1z | |
31 | 3 27 30 | sylancl | |
32 | 2 28 29 | abv1z | |
33 | 4 27 32 | sylancl | |
34 | 31 33 | eqtr4d | |
35 | 5 | expcom | |
36 | jcab | |
|
37 | oveq12 | |
|
38 | 3 | adantr | |
39 | eluzelz | |
|
40 | 39 | ad2antrl | |
41 | zq | |
|
42 | 40 41 | syl | |
43 | eluzelz | |
|
44 | 43 | ad2antll | |
45 | zq | |
|
46 | 44 45 | syl | |
47 | 1 | qrngbas | |
48 | qex | |
|
49 | cnfldmul | |
|
50 | 1 49 | ressmulr | |
51 | 48 50 | ax-mp | |
52 | 2 47 51 | abvmul | |
53 | 38 42 46 52 | syl3anc | |
54 | 4 | adantr | |
55 | 2 47 51 | abvmul | |
56 | 54 42 46 55 | syl3anc | |
57 | 53 56 | eqeq12d | |
58 | 37 57 | imbitrrid | |
59 | 58 | expcom | |
60 | 59 | a2d | |
61 | 36 60 | biimtrrid | |
62 | 10 14 18 22 26 34 35 61 | prmind | |
63 | 62 | impcom | |
64 | 6 63 | sylan2 | |
65 | 1 2 3 4 64 | ostthlem1 | |