Metamath Proof Explorer


Theorem ostthlem2

Description: Lemma for ostth . Refine ostthlem1 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
ostthlem1.1 φ F A
ostthlem1.2 φ G A
ostthlem2.3 φ p F p = G p
Assertion ostthlem2 φ F = G

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 ostthlem1.1 φ F A
4 ostthlem1.2 φ G A
5 ostthlem2.3 φ p F p = G p
6 eluz2nn n 2 n
7 fveq2 p = 1 F p = F 1
8 fveq2 p = 1 G p = G 1
9 7 8 eqeq12d p = 1 F p = G p F 1 = G 1
10 9 imbi2d p = 1 φ F p = G p φ F 1 = G 1
11 fveq2 p = y F p = F y
12 fveq2 p = y G p = G y
13 11 12 eqeq12d p = y F p = G p F y = G y
14 13 imbi2d p = y φ F p = G p φ F y = G y
15 fveq2 p = z F p = F z
16 fveq2 p = z G p = G z
17 15 16 eqeq12d p = z F p = G p F z = G z
18 17 imbi2d p = z φ F p = G p φ F z = G z
19 fveq2 p = y z F p = F y z
20 fveq2 p = y z G p = G y z
21 19 20 eqeq12d p = y z F p = G p F y z = G y z
22 21 imbi2d p = y z φ F p = G p φ F y z = G y z
23 fveq2 p = n F p = F n
24 fveq2 p = n G p = G n
25 23 24 eqeq12d p = n F p = G p F n = G n
26 25 imbi2d p = n φ F p = G p φ F n = G n
27 ax-1ne0 1 0
28 1 qrng1 1 = 1 Q
29 1 qrng0 0 = 0 Q
30 2 28 29 abv1z F A 1 0 F 1 = 1
31 3 27 30 sylancl φ F 1 = 1
32 2 28 29 abv1z G A 1 0 G 1 = 1
33 4 27 32 sylancl φ G 1 = 1
34 31 33 eqtr4d φ F 1 = G 1
35 5 expcom p φ F p = G p
36 jcab φ F y = G y F z = G z φ F y = G y φ F z = G z
37 oveq12 F y = G y F z = G z F y F z = G y G z
38 3 adantr φ y 2 z 2 F A
39 eluzelz y 2 y
40 39 ad2antrl φ y 2 z 2 y
41 zq y y
42 40 41 syl φ y 2 z 2 y
43 eluzelz z 2 z
44 43 ad2antll φ y 2 z 2 z
45 zq z z
46 44 45 syl φ y 2 z 2 z
47 1 qrngbas = Base Q
48 qex V
49 cnfldmul × = fld
50 1 49 ressmulr V × = Q
51 48 50 ax-mp × = Q
52 2 47 51 abvmul F A y z F y z = F y F z
53 38 42 46 52 syl3anc φ y 2 z 2 F y z = F y F z
54 4 adantr φ y 2 z 2 G A
55 2 47 51 abvmul G A y z G y z = G y G z
56 54 42 46 55 syl3anc φ y 2 z 2 G y z = G y G z
57 53 56 eqeq12d φ y 2 z 2 F y z = G y z F y F z = G y G z
58 37 57 syl5ibr φ y 2 z 2 F y = G y F z = G z F y z = G y z
59 58 expcom y 2 z 2 φ F y = G y F z = G z F y z = G y z
60 59 a2d y 2 z 2 φ F y = G y F z = G z φ F y z = G y z
61 36 60 syl5bir y 2 z 2 φ F y = G y φ F z = G z φ F y z = G y z
62 10 14 18 22 26 34 35 61 prmind n φ F n = G n
63 62 impcom φ n F n = G n
64 6 63 sylan2 φ n 2 F n = G n
65 1 2 3 4 64 ostthlem1 φ F = G