Metamath Proof Explorer


Theorem ostthlem2

Description: Lemma for ostth . Refine ostthlem1 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
ostthlem1.1 φFA
ostthlem1.2 φGA
ostthlem2.3 φpFp=Gp
Assertion ostthlem2 φF=G

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 ostthlem1.1 φFA
4 ostthlem1.2 φGA
5 ostthlem2.3 φpFp=Gp
6 eluz2nn n2n
7 fveq2 p=1Fp=F1
8 fveq2 p=1Gp=G1
9 7 8 eqeq12d p=1Fp=GpF1=G1
10 9 imbi2d p=1φFp=GpφF1=G1
11 fveq2 p=yFp=Fy
12 fveq2 p=yGp=Gy
13 11 12 eqeq12d p=yFp=GpFy=Gy
14 13 imbi2d p=yφFp=GpφFy=Gy
15 fveq2 p=zFp=Fz
16 fveq2 p=zGp=Gz
17 15 16 eqeq12d p=zFp=GpFz=Gz
18 17 imbi2d p=zφFp=GpφFz=Gz
19 fveq2 p=yzFp=Fyz
20 fveq2 p=yzGp=Gyz
21 19 20 eqeq12d p=yzFp=GpFyz=Gyz
22 21 imbi2d p=yzφFp=GpφFyz=Gyz
23 fveq2 p=nFp=Fn
24 fveq2 p=nGp=Gn
25 23 24 eqeq12d p=nFp=GpFn=Gn
26 25 imbi2d p=nφFp=GpφFn=Gn
27 ax-1ne0 10
28 1 qrng1 1=1Q
29 1 qrng0 0=0Q
30 2 28 29 abv1z FA10F1=1
31 3 27 30 sylancl φF1=1
32 2 28 29 abv1z GA10G1=1
33 4 27 32 sylancl φG1=1
34 31 33 eqtr4d φF1=G1
35 5 expcom pφFp=Gp
36 jcab φFy=GyFz=GzφFy=GyφFz=Gz
37 oveq12 Fy=GyFz=GzFyFz=GyGz
38 3 adantr φy2z2FA
39 eluzelz y2y
40 39 ad2antrl φy2z2y
41 zq yy
42 40 41 syl φy2z2y
43 eluzelz z2z
44 43 ad2antll φy2z2z
45 zq zz
46 44 45 syl φy2z2z
47 1 qrngbas =BaseQ
48 qex V
49 cnfldmul ×=fld
50 1 49 ressmulr V×=Q
51 48 50 ax-mp ×=Q
52 2 47 51 abvmul FAyzFyz=FyFz
53 38 42 46 52 syl3anc φy2z2Fyz=FyFz
54 4 adantr φy2z2GA
55 2 47 51 abvmul GAyzGyz=GyGz
56 54 42 46 55 syl3anc φy2z2Gyz=GyGz
57 53 56 eqeq12d φy2z2Fyz=GyzFyFz=GyGz
58 37 57 imbitrrid φy2z2Fy=GyFz=GzFyz=Gyz
59 58 expcom y2z2φFy=GyFz=GzFyz=Gyz
60 59 a2d y2z2φFy=GyFz=GzφFyz=Gyz
61 36 60 biimtrrid y2z2φFy=GyφFz=GzφFyz=Gyz
62 10 14 18 22 26 34 35 61 prmind nφFn=Gn
63 62 impcom φnFn=Gn
64 6 63 sylan2 φn2Fn=Gn
65 1 2 3 4 64 ostthlem1 φF=G