Metamath Proof Explorer


Theorem osumcllem1N

Description: Lemma for osumclN . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙=K
osumcllem.j ˙=joinK
osumcllem.a A=AtomsK
osumcllem.p +˙=+𝑃K
osumcllem.o ˙=𝑃K
osumcllem.c C=PSubClK
osumcllem.m M=X+˙p
osumcllem.u U=˙˙X+˙Y
Assertion osumcllem1N KHLXAYApUUM=M

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙=K
2 osumcllem.j ˙=joinK
3 osumcllem.a A=AtomsK
4 osumcllem.p +˙=+𝑃K
5 osumcllem.o ˙=𝑃K
6 osumcllem.c C=PSubClK
7 osumcllem.m M=X+˙p
8 osumcllem.u U=˙˙X+˙Y
9 3 4 sspadd1 KHLXAYAXX+˙Y
10 9 adantr KHLXAYApUXX+˙Y
11 simpl1 KHLXAYApUKHL
12 3 4 paddssat KHLXAYAX+˙YA
13 12 adantr KHLXAYApUX+˙YA
14 3 5 2polssN KHLX+˙YAX+˙Y˙˙X+˙Y
15 11 13 14 syl2anc KHLXAYApUX+˙Y˙˙X+˙Y
16 15 8 sseqtrrdi KHLXAYApUX+˙YU
17 10 16 sstrd KHLXAYApUXU
18 simpr KHLXAYApUpU
19 18 snssd KHLXAYApUpU
20 simpl2 KHLXAYApUXA
21 3 5 polssatN KHLX+˙YA˙X+˙YA
22 11 13 21 syl2anc KHLXAYApU˙X+˙YA
23 3 5 polssatN KHL˙X+˙YA˙˙X+˙YA
24 11 22 23 syl2anc KHLXAYApU˙˙X+˙YA
25 8 24 eqsstrid KHLXAYApUUA
26 19 25 sstrd KHLXAYApUpA
27 eqid PSubSpK=PSubSpK
28 3 27 5 polsubN KHL˙X+˙YA˙˙X+˙YPSubSpK
29 11 22 28 syl2anc KHLXAYApU˙˙X+˙YPSubSpK
30 8 29 eqeltrid KHLXAYApUUPSubSpK
31 3 27 4 paddss KHLXApAUPSubSpKXUpUX+˙pU
32 11 20 26 30 31 syl13anc KHLXAYApUXUpUX+˙pU
33 17 19 32 mpbi2and KHLXAYApUX+˙pU
34 7 33 eqsstrid KHLXAYApUMU
35 sseqin2 MUUM=M
36 34 35 sylib KHLXAYApUUM=M