Description: Lemma for paddass . The case when x = y . (Contributed by NM, 11-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paddasslem.l | |
|
paddasslem.j | |
||
paddasslem.a | |
||
paddasslem.p | |
||
Assertion | paddasslem12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddasslem.l | |
|
2 | paddasslem.j | |
|
3 | paddasslem.a | |
|
4 | paddasslem.p | |
|
5 | simpl1l | |
|
6 | simpl21 | |
|
7 | simpl22 | |
|
8 | 3 4 | paddssat | |
9 | 5 6 7 8 | syl3anc | |
10 | simpl23 | |
|
11 | 5 9 10 | 3jca | |
12 | 3 4 | sspadd2 | |
13 | 5 7 6 12 | syl3anc | |
14 | 3 4 | paddss1 | |
15 | 11 13 14 | sylc | |
16 | 5 | hllatd | |
17 | simprll | |
|
18 | simprlr | |
|
19 | simpl3l | |
|
20 | eqid | |
|
21 | 20 3 | atbase | |
22 | 19 21 | syl | |
23 | 7 17 | sseldd | |
24 | 20 3 | atbase | |
25 | 23 24 | syl | |
26 | simpl3r | |
|
27 | 20 3 | atbase | |
28 | 26 27 | syl | |
29 | 20 2 | latjcl | |
30 | 16 25 28 29 | syl3anc | |
31 | 10 18 | sseldd | |
32 | 20 3 | atbase | |
33 | 31 32 | syl | |
34 | 20 2 | latjcl | |
35 | 16 25 33 34 | syl3anc | |
36 | simpl1r | |
|
37 | simprrl | |
|
38 | oveq1 | |
|
39 | 38 | breq2d | |
40 | 39 | biimpa | |
41 | 36 37 40 | syl2anc | |
42 | 20 1 2 | latlej1 | |
43 | 16 25 33 42 | syl3anc | |
44 | simprrr | |
|
45 | 20 1 2 | latjle12 | |
46 | 16 25 28 35 45 | syl13anc | |
47 | 43 44 46 | mpbi2and | |
48 | 20 1 16 22 30 35 41 47 | lattrd | |
49 | 1 2 3 4 | elpaddri | |
50 | 16 7 10 17 18 19 48 49 | syl322anc | |
51 | 15 50 | sseldd | |