Metamath Proof Explorer


Theorem paddasslem12

Description: Lemma for paddass . The case when x = y . (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙=K
paddasslem.j ˙=joinK
paddasslem.a A=AtomsK
paddasslem.p +˙=+𝑃K
Assertion paddasslem12 KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zpX+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙=K
2 paddasslem.j ˙=joinK
3 paddasslem.a A=AtomsK
4 paddasslem.p +˙=+𝑃K
5 simpl1l KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zKHL
6 simpl21 KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zXA
7 simpl22 KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zYA
8 3 4 paddssat KHLXAYAX+˙YA
9 5 6 7 8 syl3anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zX+˙YA
10 simpl23 KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zZA
11 5 9 10 3jca KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zKHLX+˙YAZA
12 3 4 sspadd2 KHLYAXAYX+˙Y
13 5 7 6 12 syl3anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zYX+˙Y
14 3 4 paddss1 KHLX+˙YAZAYX+˙YY+˙ZX+˙Y+˙Z
15 11 13 14 sylc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zY+˙ZX+˙Y+˙Z
16 5 hllatd KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zKLat
17 simprll KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zyY
18 simprlr KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zzZ
19 simpl3l KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zpA
20 eqid BaseK=BaseK
21 20 3 atbase pApBaseK
22 19 21 syl KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zpBaseK
23 7 17 sseldd KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zyA
24 20 3 atbase yAyBaseK
25 23 24 syl KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zyBaseK
26 simpl3r KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zrA
27 20 3 atbase rArBaseK
28 26 27 syl KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zrBaseK
29 20 2 latjcl KLatyBaseKrBaseKy˙rBaseK
30 16 25 28 29 syl3anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zy˙rBaseK
31 10 18 sseldd KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zzA
32 20 3 atbase zAzBaseK
33 31 32 syl KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zzBaseK
34 20 2 latjcl KLatyBaseKzBaseKy˙zBaseK
35 16 25 33 34 syl3anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zy˙zBaseK
36 simpl1r KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zx=y
37 simprrl KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zp˙x˙r
38 oveq1 x=yx˙r=y˙r
39 38 breq2d x=yp˙x˙rp˙y˙r
40 39 biimpa x=yp˙x˙rp˙y˙r
41 36 37 40 syl2anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zp˙y˙r
42 20 1 2 latlej1 KLatyBaseKzBaseKy˙y˙z
43 16 25 33 42 syl3anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zy˙y˙z
44 simprrr KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zr˙y˙z
45 20 1 2 latjle12 KLatyBaseKrBaseKy˙zBaseKy˙y˙zr˙y˙zy˙r˙y˙z
46 16 25 28 35 45 syl13anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zy˙y˙zr˙y˙zy˙r˙y˙z
47 43 44 46 mpbi2and KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zy˙r˙y˙z
48 20 1 16 22 30 35 41 47 lattrd KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zp˙y˙z
49 1 2 3 4 elpaddri KLatYAZAyYzZpAp˙y˙zpY+˙Z
50 16 7 10 17 18 19 48 49 syl322anc KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zpY+˙Z
51 15 50 sseldd KHLx=yXAYAZApArAyYzZp˙x˙rr˙y˙zpX+˙Y+˙Z