Metamath Proof Explorer


Theorem pcbcctr

Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Assertion pcbcctr NPPpCnt(2 NN)=k=12 N2 NPk2NPk

Proof

Step Hyp Ref Expression
1 2nn 2
2 nnmulcl 2N2 N
3 1 2 mpan N2 N
4 3 adantr NP2 N
5 nnnn0 NN0
6 fzctr N0N02 N
7 5 6 syl NN02 N
8 7 adantr NPN02 N
9 simpr NPP
10 pcbc 2 NN02 NPPpCnt(2 NN)=k=12 N2 NPk2 NNPk+NPk
11 4 8 9 10 syl3anc NPPpCnt(2 NN)=k=12 N2 NPk2 NNPk+NPk
12 nncn NN
13 12 2timesd N2 N=N+N
14 12 12 13 mvrladdd N2 NN=N
15 14 fvoveq1d N2 NNPk=NPk
16 15 oveq1d N2 NNPk+NPk=NPk+NPk
17 16 ad2antrr NPk12 N2 NNPk+NPk=NPk+NPk
18 nnre NN
19 18 ad2antrr NPk12 NN
20 prmnn PP
21 20 adantl NPP
22 elfznn k12 Nk
23 22 nnnn0d k12 Nk0
24 nnexpcl Pk0Pk
25 21 23 24 syl2an NPk12 NPk
26 19 25 nndivred NPk12 NNPk
27 26 flcld NPk12 NNPk
28 27 zcnd NPk12 NNPk
29 28 2timesd NPk12 N2NPk=NPk+NPk
30 17 29 eqtr4d NPk12 N2 NNPk+NPk=2NPk
31 30 oveq2d NPk12 N2 NPk2 NNPk+NPk=2 NPk2NPk
32 31 sumeq2dv NPk=12 N2 NPk2 NNPk+NPk=k=12 N2 NPk2NPk
33 11 32 eqtrd NPPpCnt(2 NN)=k=12 N2 NPk2NPk