Metamath Proof Explorer


Theorem pell14qrgapw

Description: Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrgapw DAPell14QRD1<A2<A

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i DAPell14QRD1<A2
3 eldifi DD
4 3 3ad2ant1 DAPell14QRD1<AD
5 4 nnrpd DAPell14QRD1<AD+
6 1rp 1+
7 6 a1i DAPell14QRD1<A1+
8 5 7 rpaddcld DAPell14QRD1<AD+1+
9 8 rpsqrtcld DAPell14QRD1<AD+1+
10 9 rpred DAPell14QRD1<AD+1
11 5 rpsqrtcld DAPell14QRD1<AD+
12 11 rpred DAPell14QRD1<AD
13 10 12 readdcld DAPell14QRD1<AD+1+D
14 pell14qrre DAPell14QRDA
15 14 3adant3 DAPell14QRD1<AA
16 df-2 2=1+1
17 1red DAPell14QRD1<A1
18 4 nnred DAPell14QRD1<AD
19 peano2re DD+1
20 18 19 syl DAPell14QRD1<AD+1
21 4 nnge1d DAPell14QRD1<A1D
22 18 ltp1d DAPell14QRD1<AD<D+1
23 17 18 20 21 22 lelttrd DAPell14QRD1<A1<D+1
24 sq1 12=1
25 24 a1i DAPell14QRD1<A12=1
26 4 nncnd DAPell14QRD1<AD
27 peano2cn DD+1
28 26 27 syl DAPell14QRD1<AD+1
29 28 sqsqrtd DAPell14QRD1<AD+12=D+1
30 23 25 29 3brtr4d DAPell14QRD1<A12<D+12
31 0le1 01
32 31 a1i DAPell14QRD1<A01
33 9 rpge0d DAPell14QRD1<A0D+1
34 17 10 32 33 lt2sqd DAPell14QRD1<A1<D+112<D+12
35 30 34 mpbird DAPell14QRD1<A1<D+1
36 26 sqsqrtd DAPell14QRD1<AD2=D
37 21 25 36 3brtr4d DAPell14QRD1<A12D2
38 11 rpge0d DAPell14QRD1<A0D
39 17 12 32 38 le2sqd DAPell14QRD1<A1D12D2
40 37 39 mpbird DAPell14QRD1<A1D
41 17 17 10 12 35 40 ltleaddd DAPell14QRD1<A1+1<D+1+D
42 16 41 eqbrtrid DAPell14QRD1<A2<D+1+D
43 pell14qrgap DAPell14QRD1<AD+1+DA
44 2 13 15 42 43 ltletrd DAPell14QRD1<A2<A