Metamath Proof Explorer


Theorem pf1const

Description: Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1const.b B=BaseR
pf1const.q Q=raneval1R
Assertion pf1const RCRingXBB×XQ

Proof

Step Hyp Ref Expression
1 pf1const.b B=BaseR
2 pf1const.q Q=raneval1R
3 eqid eval1R=eval1R
4 eqid Poly1R=Poly1R
5 eqid algScPoly1R=algScPoly1R
6 3 4 1 5 evl1sca RCRingXBeval1RalgScPoly1RX=B×X
7 eqid R𝑠B=R𝑠B
8 3 4 7 1 evl1rhm RCRingeval1RPoly1RRingHomR𝑠B
9 8 adantr RCRingXBeval1RPoly1RRingHomR𝑠B
10 eqid BasePoly1R=BasePoly1R
11 eqid BaseR𝑠B=BaseR𝑠B
12 10 11 rhmf eval1RPoly1RRingHomR𝑠Beval1R:BasePoly1RBaseR𝑠B
13 ffn eval1R:BasePoly1RBaseR𝑠Beval1RFnBasePoly1R
14 9 12 13 3syl RCRingXBeval1RFnBasePoly1R
15 crngring RCRingRRing
16 15 adantr RCRingXBRRing
17 4 5 1 10 ply1sclf RRingalgScPoly1R:BBasePoly1R
18 16 17 syl RCRingXBalgScPoly1R:BBasePoly1R
19 ffvelcdm algScPoly1R:BBasePoly1RXBalgScPoly1RXBasePoly1R
20 18 19 sylancom RCRingXBalgScPoly1RXBasePoly1R
21 fnfvelrn eval1RFnBasePoly1RalgScPoly1RXBasePoly1Reval1RalgScPoly1RXraneval1R
22 14 20 21 syl2anc RCRingXBeval1RalgScPoly1RXraneval1R
23 6 22 eqeltrrd RCRingXBB×Xraneval1R
24 23 2 eleqtrrdi RCRingXBB×XQ