Metamath Proof Explorer


Theorem pf1const

Description: Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1const.b B = Base R
pf1const.q Q = ran eval 1 R
Assertion pf1const R CRing X B B × X Q

Proof

Step Hyp Ref Expression
1 pf1const.b B = Base R
2 pf1const.q Q = ran eval 1 R
3 eqid eval 1 R = eval 1 R
4 eqid Poly 1 R = Poly 1 R
5 eqid algSc Poly 1 R = algSc Poly 1 R
6 3 4 1 5 evl1sca R CRing X B eval 1 R algSc Poly 1 R X = B × X
7 eqid R 𝑠 B = R 𝑠 B
8 3 4 7 1 evl1rhm R CRing eval 1 R Poly 1 R RingHom R 𝑠 B
9 8 adantr R CRing X B eval 1 R Poly 1 R RingHom R 𝑠 B
10 eqid Base Poly 1 R = Base Poly 1 R
11 eqid Base R 𝑠 B = Base R 𝑠 B
12 10 11 rhmf eval 1 R Poly 1 R RingHom R 𝑠 B eval 1 R : Base Poly 1 R Base R 𝑠 B
13 ffn eval 1 R : Base Poly 1 R Base R 𝑠 B eval 1 R Fn Base Poly 1 R
14 9 12 13 3syl R CRing X B eval 1 R Fn Base Poly 1 R
15 crngring R CRing R Ring
16 15 adantr R CRing X B R Ring
17 4 5 1 10 ply1sclf R Ring algSc Poly 1 R : B Base Poly 1 R
18 16 17 syl R CRing X B algSc Poly 1 R : B Base Poly 1 R
19 ffvelrn algSc Poly 1 R : B Base Poly 1 R X B algSc Poly 1 R X Base Poly 1 R
20 18 19 sylancom R CRing X B algSc Poly 1 R X Base Poly 1 R
21 fnfvelrn eval 1 R Fn Base Poly 1 R algSc Poly 1 R X Base Poly 1 R eval 1 R algSc Poly 1 R X ran eval 1 R
22 14 20 21 syl2anc R CRing X B eval 1 R algSc Poly 1 R X ran eval 1 R
23 6 22 eqeltrrd R CRing X B B × X ran eval 1 R
24 23 2 eleqtrrdi R CRing X B B × X Q