| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2 |
|
| 2 |
|
zsubcl |
|
| 3 |
2
|
3adant1 |
|
| 4 |
3
|
adantr |
|
| 5 |
1 4
|
sylbi |
|
| 6 |
5
|
adantr |
|
| 7 |
|
elfzonelfzo |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
elfz2nn0 |
|
| 10 |
|
nn0cn |
|
| 11 |
|
nn0cn |
|
| 12 |
|
elfzelz |
|
| 13 |
|
zcn |
|
| 14 |
|
subcl |
|
| 15 |
14
|
ancoms |
|
| 16 |
15
|
addridd |
|
| 17 |
16
|
eqcomd |
|
| 18 |
17
|
adantl |
|
| 19 |
|
simprr |
|
| 20 |
|
simpl |
|
| 21 |
20
|
adantl |
|
| 22 |
|
simpl |
|
| 23 |
19 21 22
|
npncan3d |
|
| 24 |
23
|
eqcomd |
|
| 25 |
18 24
|
oveq12d |
|
| 26 |
25
|
ex |
|
| 27 |
12 13 26
|
3syl |
|
| 28 |
27
|
com12 |
|
| 29 |
10 11 28
|
syl2an |
|
| 30 |
29
|
3adant3 |
|
| 31 |
9 30
|
sylbi |
|
| 32 |
31
|
imp |
|
| 33 |
32
|
eleq2d |
|
| 34 |
33
|
biimpa |
|
| 35 |
|
0zd |
|
| 36 |
|
elfz2 |
|
| 37 |
|
zsubcl |
|
| 38 |
37
|
ancoms |
|
| 39 |
38
|
3adant2 |
|
| 40 |
39
|
adantr |
|
| 41 |
36 40
|
sylbi |
|
| 42 |
41
|
adantl |
|
| 43 |
6 35 42
|
3jca |
|
| 44 |
43
|
adantr |
|
| 45 |
|
fzosubel2 |
|
| 46 |
34 44 45
|
syl2anc |
|
| 47 |
46
|
ex |
|
| 48 |
8 47
|
syld |
|