| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pfxlsw2ccat.n |
|
| 2 |
|
simpl |
|
| 3 |
|
simpr |
|
| 4 |
3 1
|
breqtrdi |
|
| 5 |
|
wrdlenge2n0 |
|
| 6 |
2 4 5
|
syl2anc |
|
| 7 |
|
pfxlswccat |
|
| 8 |
2 6 7
|
syl2anc |
|
| 9 |
|
lsw |
|
| 10 |
1
|
oveq1i |
|
| 11 |
10
|
fveq2i |
|
| 12 |
9 11
|
eqtr4di |
|
| 13 |
2 12
|
syl |
|
| 14 |
13
|
s1eqd |
|
| 15 |
14
|
oveq2d |
|
| 16 |
8 15
|
eqtr3d |
|
| 17 |
|
pfxcl |
|
| 18 |
2 17
|
syl |
|
| 19 |
|
lencl |
|
| 20 |
2 19
|
syl |
|
| 21 |
1 20
|
eqeltrid |
|
| 22 |
|
nn0ge2m1nn |
|
| 23 |
21 3 22
|
syl2anc |
|
| 24 |
10 23
|
eqeltrrid |
|
| 25 |
20
|
nn0red |
|
| 26 |
25
|
lem1d |
|
| 27 |
|
pfxn0 |
|
| 28 |
2 24 26 27
|
syl3anc |
|
| 29 |
|
pfxlswccat |
|
| 30 |
18 28 29
|
syl2anc |
|
| 31 |
|
ige2m1fz |
|
| 32 |
20 4 31
|
syl2anc |
|
| 33 |
|
pfxlen |
|
| 34 |
2 32 33
|
syl2anc |
|
| 35 |
34
|
oveq1d |
|
| 36 |
|
0zd |
|
| 37 |
|
nn0ge2m1nn0 |
|
| 38 |
21 3 37
|
syl2anc |
|
| 39 |
10 38
|
eqeltrrid |
|
| 40 |
39
|
nn0zd |
|
| 41 |
|
1zzd |
|
| 42 |
40 41
|
zsubcld |
|
| 43 |
|
2nn0 |
|
| 44 |
43
|
a1i |
|
| 45 |
|
nn0sub |
|
| 46 |
45
|
biimpa |
|
| 47 |
44 21 3 46
|
syl21anc |
|
| 48 |
47
|
nn0ge0d |
|
| 49 |
21
|
nn0cnd |
|
| 50 |
|
sub1m1 |
|
| 51 |
49 50
|
syl |
|
| 52 |
48 51
|
breqtrrd |
|
| 53 |
10
|
oveq1i |
|
| 54 |
52 53
|
breqtrdi |
|
| 55 |
24
|
nnred |
|
| 56 |
55
|
lem1d |
|
| 57 |
36 40 42 54 56
|
elfzd |
|
| 58 |
35 57
|
eqeltrd |
|
| 59 |
|
pfxpfx |
|
| 60 |
2 32 58 59
|
syl3anc |
|
| 61 |
34 10
|
eqtr4di |
|
| 62 |
61
|
oveq1d |
|
| 63 |
62 51
|
eqtrd |
|
| 64 |
63
|
oveq2d |
|
| 65 |
60 64
|
eqtrd |
|
| 66 |
|
pfxtrcfvl |
|
| 67 |
2 4 66
|
syl2anc |
|
| 68 |
1
|
a1i |
|
| 69 |
68
|
fvoveq1d |
|
| 70 |
67 69
|
eqtr4d |
|
| 71 |
70
|
s1eqd |
|
| 72 |
65 71
|
oveq12d |
|
| 73 |
30 72
|
eqtr3d |
|
| 74 |
73
|
oveq1d |
|
| 75 |
|
pfxcl |
|
| 76 |
2 75
|
syl |
|
| 77 |
|
ccatw2s1ccatws2 |
|
| 78 |
76 77
|
syl |
|
| 79 |
16 74 78
|
3eqtrd |
|