Metamath Proof Explorer


Theorem phibnd

Description: A slightly tighter bound on the value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phibnd N2ϕNN1

Proof

Step Hyp Ref Expression
1 fzfi 1N1Fin
2 phibndlem N2x1N|xgcdN=11N1
3 ssdomg 1N1Finx1N|xgcdN=11N1x1N|xgcdN=11N1
4 1 2 3 mpsyl N2x1N|xgcdN=11N1
5 fzfi 1NFin
6 ssrab2 x1N|xgcdN=11N
7 ssfi 1NFinx1N|xgcdN=11Nx1N|xgcdN=1Fin
8 5 6 7 mp2an x1N|xgcdN=1Fin
9 hashdom x1N|xgcdN=1Fin1N1Finx1N|xgcdN=11N1x1N|xgcdN=11N1
10 8 1 9 mp2an x1N|xgcdN=11N1x1N|xgcdN=11N1
11 4 10 sylibr N2x1N|xgcdN=11N1
12 eluz2nn N2N
13 phival NϕN=x1N|xgcdN=1
14 12 13 syl N2ϕN=x1N|xgcdN=1
15 nnm1nn0 NN10
16 hashfz1 N101N1=N1
17 12 15 16 3syl N21N1=N1
18 17 eqcomd N2N1=1N1
19 11 14 18 3brtr4d N2ϕNN1