Metamath Proof Explorer


Theorem phibnd

Description: A slightly tighter bound on the value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phibnd N 2 ϕ N N 1

Proof

Step Hyp Ref Expression
1 fzfi 1 N 1 Fin
2 phibndlem N 2 x 1 N | x gcd N = 1 1 N 1
3 ssdomg 1 N 1 Fin x 1 N | x gcd N = 1 1 N 1 x 1 N | x gcd N = 1 1 N 1
4 1 2 3 mpsyl N 2 x 1 N | x gcd N = 1 1 N 1
5 fzfi 1 N Fin
6 ssrab2 x 1 N | x gcd N = 1 1 N
7 ssfi 1 N Fin x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 Fin
8 5 6 7 mp2an x 1 N | x gcd N = 1 Fin
9 hashdom x 1 N | x gcd N = 1 Fin 1 N 1 Fin x 1 N | x gcd N = 1 1 N 1 x 1 N | x gcd N = 1 1 N 1
10 8 1 9 mp2an x 1 N | x gcd N = 1 1 N 1 x 1 N | x gcd N = 1 1 N 1
11 4 10 sylibr N 2 x 1 N | x gcd N = 1 1 N 1
12 eluz2nn N 2 N
13 phival N ϕ N = x 1 N | x gcd N = 1
14 12 13 syl N 2 ϕ N = x 1 N | x gcd N = 1
15 nnm1nn0 N N 1 0
16 hashfz1 N 1 0 1 N 1 = N 1
17 12 15 16 3syl N 2 1 N 1 = N 1
18 17 eqcomd N 2 N 1 = 1 N 1
19 11 14 18 3brtr4d N 2 ϕ N N 1