Metamath Proof Explorer


Theorem pi1inv

Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypotheses pi1grp.2 G = J π 1 Y
pi1inv.n N = inv g G
pi1inv.j φ J TopOn X
pi1inv.y φ Y X
pi1inv.f φ F II Cn J
pi1inv.0 φ F 0 = Y
pi1inv.1 φ F 1 = Y
pi1inv.i I = x 0 1 F 1 x
Assertion pi1inv φ N F ph J = I ph J

Proof

Step Hyp Ref Expression
1 pi1grp.2 G = J π 1 Y
2 pi1inv.n N = inv g G
3 pi1inv.j φ J TopOn X
4 pi1inv.y φ Y X
5 pi1inv.f φ F II Cn J
6 pi1inv.0 φ F 0 = Y
7 pi1inv.1 φ F 1 = Y
8 pi1inv.i I = x 0 1 F 1 x
9 eqid Base G = Base G
10 eqid + G = + G
11 8 pcorevcl F II Cn J I II Cn J I 0 = F 1 I 1 = F 0
12 5 11 syl φ I II Cn J I 0 = F 1 I 1 = F 0
13 12 simp1d φ I II Cn J
14 12 simp2d φ I 0 = F 1
15 14 7 eqtrd φ I 0 = Y
16 12 simp3d φ I 1 = F 0
17 16 6 eqtrd φ I 1 = Y
18 9 a1i φ Base G = Base G
19 1 3 4 18 pi1eluni φ I Base G I II Cn J I 0 = Y I 1 = Y
20 13 15 17 19 mpbir3and φ I Base G
21 1 3 4 18 pi1eluni φ F Base G F II Cn J F 0 = Y F 1 = Y
22 5 6 7 21 mpbir3and φ F Base G
23 1 9 3 4 10 20 22 pi1addval φ I ph J + G F ph J = I * 𝑝 J F ph J
24 phtpcer ph J Er II Cn J
25 24 a1i φ ph J Er II Cn J
26 eqid 0 1 × F 1 = 0 1 × F 1
27 8 26 pcorev F II Cn J I * 𝑝 J F ph J 0 1 × F 1
28 5 27 syl φ I * 𝑝 J F ph J 0 1 × F 1
29 7 sneqd φ F 1 = Y
30 29 xpeq2d φ 0 1 × F 1 = 0 1 × Y
31 28 30 breqtrd φ I * 𝑝 J F ph J 0 1 × Y
32 25 31 erthi φ I * 𝑝 J F ph J = 0 1 × Y ph J
33 eqid 0 1 × Y = 0 1 × Y
34 1 9 3 4 33 pi1grplem φ G Grp 0 1 × Y ph J = 0 G
35 34 simprd φ 0 1 × Y ph J = 0 G
36 23 32 35 3eqtrd φ I ph J + G F ph J = 0 G
37 34 simpld φ G Grp
38 1 9 3 4 5 6 7 elpi1i φ F ph J Base G
39 1 9 3 4 13 15 17 elpi1i φ I ph J Base G
40 eqid 0 G = 0 G
41 9 10 40 2 grpinvid2 G Grp F ph J Base G I ph J Base G N F ph J = I ph J I ph J + G F ph J = 0 G
42 37 38 39 41 syl3anc φ N F ph J = I ph J I ph J + G F ph J = 0 G
43 36 42 mpbird φ N F ph J = I ph J