Metamath Proof Explorer


Theorem pimgtmnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimgtmnf2.1 _xF
pimgtmnf2.2 φF:A
Assertion pimgtmnf2 φxA|−∞<Fx=A

Proof

Step Hyp Ref Expression
1 pimgtmnf2.1 _xF
2 pimgtmnf2.2 φF:A
3 ssrab2 xA|−∞<FxA
4 3 a1i φxA|−∞<FxA
5 ssid AA
6 5 a1i φAA
7 2 ffvelcdmda φyAFy
8 7 mnfltd φyA−∞<Fy
9 8 ralrimiva φyA−∞<Fy
10 nfcv _x−∞
11 nfcv _x<
12 nfcv _xy
13 1 12 nffv _xFy
14 10 11 13 nfbr x−∞<Fy
15 nfv y−∞<Fx
16 fveq2 y=xFy=Fx
17 16 breq2d y=x−∞<Fy−∞<Fx
18 14 15 17 cbvralw yA−∞<FyxA−∞<Fx
19 9 18 sylib φxA−∞<Fx
20 6 19 jca φAAxA−∞<Fx
21 nfcv _xA
22 21 21 ssrabf AxA|−∞<FxAAxA−∞<Fx
23 20 22 sylibr φAxA|−∞<Fx
24 4 23 eqssd φxA|−∞<Fx=A