Metamath Proof Explorer


Theorem pimgtpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimgtpnf2.1 _ x F
pimgtpnf2.2 φ F : A
Assertion pimgtpnf2 φ x A | +∞ < F x =

Proof

Step Hyp Ref Expression
1 pimgtpnf2.1 _ x F
2 pimgtpnf2.2 φ F : A
3 nfcv _ x A
4 nfcv _ y A
5 nfv y +∞ < F x
6 nfcv _ x +∞
7 nfcv _ x <
8 nfcv _ x y
9 1 8 nffv _ x F y
10 6 7 9 nfbr x +∞ < F y
11 fveq2 x = y F x = F y
12 11 breq2d x = y +∞ < F x +∞ < F y
13 3 4 5 10 12 cbvrabw x A | +∞ < F x = y A | +∞ < F y
14 13 a1i φ x A | +∞ < F x = y A | +∞ < F y
15 2 ffvelrnda φ y A F y
16 15 rexrd φ y A F y *
17 pnfxr +∞ *
18 17 a1i φ y A +∞ *
19 15 ltpnfd φ y A F y < +∞
20 16 18 19 xrltled φ y A F y +∞
21 16 18 xrlenltd φ y A F y +∞ ¬ +∞ < F y
22 20 21 mpbid φ y A ¬ +∞ < F y
23 22 ralrimiva φ y A ¬ +∞ < F y
24 rabeq0 y A | +∞ < F y = y A ¬ +∞ < F y
25 23 24 sylibr φ y A | +∞ < F y =
26 14 25 eqtrd φ x A | +∞ < F x =