Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjhthmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 | |
|
2 | reeanv | |
|
3 | simpll1 | |
|
4 | simpll2 | |
|
5 | simpll3 | |
|
6 | simplrl | |
|
7 | simprll | |
|
8 | simplrr | |
|
9 | simprlr | |
|
10 | simprrl | |
|
11 | simprrr | |
|
12 | 10 11 | eqtr3d | |
13 | 3 4 5 6 7 8 9 12 | shuni | |
14 | 13 | simpld | |
15 | 14 | exp32 | |
16 | 15 | rexlimdvv | |
17 | 2 16 | biimtrrid | |
18 | 17 | expimpd | |
19 | 1 18 | biimtrrid | |
20 | 19 | alrimivv | |
21 | eleq1w | |
|
22 | oveq1 | |
|
23 | 22 | eqeq2d | |
24 | 23 | rexbidv | |
25 | oveq2 | |
|
26 | 25 | eqeq2d | |
27 | 26 | cbvrexvw | |
28 | 24 27 | bitrdi | |
29 | 21 28 | anbi12d | |
30 | 29 | mo4 | |
31 | 20 30 | sylibr | |