Metamath Proof Explorer


Theorem pjhthmo

Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhthmo ASBSAB=0*xxAyBC=x+y

Proof

Step Hyp Ref Expression
1 an4 xAzAyBC=x+ywBC=z+wxAyBC=x+yzAwBC=z+w
2 reeanv yBwBC=x+yC=z+wyBC=x+ywBC=z+w
3 simpll1 ASBSAB=0xAzAyBwBC=x+yC=z+wAS
4 simpll2 ASBSAB=0xAzAyBwBC=x+yC=z+wBS
5 simpll3 ASBSAB=0xAzAyBwBC=x+yC=z+wAB=0
6 simplrl ASBSAB=0xAzAyBwBC=x+yC=z+wxA
7 simprll ASBSAB=0xAzAyBwBC=x+yC=z+wyB
8 simplrr ASBSAB=0xAzAyBwBC=x+yC=z+wzA
9 simprlr ASBSAB=0xAzAyBwBC=x+yC=z+wwB
10 simprrl ASBSAB=0xAzAyBwBC=x+yC=z+wC=x+y
11 simprrr ASBSAB=0xAzAyBwBC=x+yC=z+wC=z+w
12 10 11 eqtr3d ASBSAB=0xAzAyBwBC=x+yC=z+wx+y=z+w
13 3 4 5 6 7 8 9 12 shuni ASBSAB=0xAzAyBwBC=x+yC=z+wx=zy=w
14 13 simpld ASBSAB=0xAzAyBwBC=x+yC=z+wx=z
15 14 exp32 ASBSAB=0xAzAyBwBC=x+yC=z+wx=z
16 15 rexlimdvv ASBSAB=0xAzAyBwBC=x+yC=z+wx=z
17 2 16 biimtrrid ASBSAB=0xAzAyBC=x+ywBC=z+wx=z
18 17 expimpd ASBSAB=0xAzAyBC=x+ywBC=z+wx=z
19 1 18 biimtrrid ASBSAB=0xAyBC=x+yzAwBC=z+wx=z
20 19 alrimivv ASBSAB=0xzxAyBC=x+yzAwBC=z+wx=z
21 eleq1w x=zxAzA
22 oveq1 x=zx+y=z+y
23 22 eqeq2d x=zC=x+yC=z+y
24 23 rexbidv x=zyBC=x+yyBC=z+y
25 oveq2 y=wz+y=z+w
26 25 eqeq2d y=wC=z+yC=z+w
27 26 cbvrexvw yBC=z+ywBC=z+w
28 24 27 bitrdi x=zyBC=x+ywBC=z+w
29 21 28 anbi12d x=zxAyBC=x+yzAwBC=z+w
30 29 mo4 *xxAyBC=x+yxzxAyBC=x+yzAwBC=z+wx=z
31 20 30 sylibr ASBSAB=0*xxAyBC=x+y