Metamath Proof Explorer


Theorem pjpm

Description: The projection map is a partial function from subspaces of the pre-Hilbert space to total operators. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjpm.v V = Base W
pjpm.l L = LSubSp W
pjpm.k K = proj W
Assertion pjpm K V V 𝑝𝑚 L

Proof

Step Hyp Ref Expression
1 pjpm.v V = Base W
2 pjpm.l L = LSubSp W
3 pjpm.k K = proj W
4 eqid ocv W = ocv W
5 eqid proj 1 W = proj 1 W
6 1 2 4 5 3 pjfval K = x L x proj 1 W ocv W x V × V V
7 inss1 x L x proj 1 W ocv W x V × V V x L x proj 1 W ocv W x
8 6 7 eqsstri K x L x proj 1 W ocv W x
9 funmpt Fun x L x proj 1 W ocv W x
10 funss K x L x proj 1 W ocv W x Fun x L x proj 1 W ocv W x Fun K
11 8 9 10 mp2 Fun K
12 eqid x L x proj 1 W ocv W x = x L x proj 1 W ocv W x
13 ovexd x L x proj 1 W ocv W x V
14 12 13 fmpti x L x proj 1 W ocv W x : L V
15 fssxp x L x proj 1 W ocv W x : L V x L x proj 1 W ocv W x L × V
16 ssrin x L x proj 1 W ocv W x L × V x L x proj 1 W ocv W x V × V V L × V V × V V
17 14 15 16 mp2b x L x proj 1 W ocv W x V × V V L × V V × V V
18 6 17 eqsstri K L × V V × V V
19 inxp L × V V × V V = L V × V V V
20 inv1 L V = L
21 incom V V V = V V V
22 inv1 V V V = V V
23 21 22 eqtri V V V = V V
24 20 23 xpeq12i L V × V V V = L × V V
25 19 24 eqtri L × V V × V V = L × V V
26 18 25 sseqtri K L × V V
27 ovex V V V
28 2 fvexi L V
29 27 28 elpm K V V 𝑝𝑚 L Fun K K L × V V
30 11 26 29 mpbir2an K V V 𝑝𝑚 L