Metamath Proof Explorer


Theorem pjpm

Description: The projection map is a partial function from subspaces of the pre-Hilbert space to total operators. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjpm.v V=BaseW
pjpm.l L=LSubSpW
pjpm.k K=projW
Assertion pjpm KVV𝑝𝑚L

Proof

Step Hyp Ref Expression
1 pjpm.v V=BaseW
2 pjpm.l L=LSubSpW
3 pjpm.k K=projW
4 eqid ocvW=ocvW
5 eqid proj1W=proj1W
6 1 2 4 5 3 pjfval K=xLxproj1WocvWxV×VV
7 inss1 xLxproj1WocvWxV×VVxLxproj1WocvWx
8 6 7 eqsstri KxLxproj1WocvWx
9 funmpt FunxLxproj1WocvWx
10 funss KxLxproj1WocvWxFunxLxproj1WocvWxFunK
11 8 9 10 mp2 FunK
12 eqid xLxproj1WocvWx=xLxproj1WocvWx
13 ovexd xLxproj1WocvWxV
14 12 13 fmpti xLxproj1WocvWx:LV
15 fssxp xLxproj1WocvWx:LVxLxproj1WocvWxL×V
16 ssrin xLxproj1WocvWxL×VxLxproj1WocvWxV×VVL×VV×VV
17 14 15 16 mp2b xLxproj1WocvWxV×VVL×VV×VV
18 6 17 eqsstri KL×VV×VV
19 inxp L×VV×VV=LV×VVV
20 inv1 LV=L
21 incom VVV=VVV
22 inv1 VVV=VV
23 21 22 eqtri VVV=VV
24 20 23 xpeq12i LV×VVV=L×VV
25 19 24 eqtri L×VV×VV=L×VV
26 18 25 sseqtri KL×VV
27 ovex VVV
28 2 fvexi LV
29 27 28 elpm KVV𝑝𝑚LFunKKL×VV
30 11 26 29 mpbir2an KVV𝑝𝑚L