Description: The projection map is a partial function from subspaces of the pre-Hilbert space to total operators. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjpm.v | |
|
pjpm.l | |
||
pjpm.k | |
||
Assertion | pjpm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjpm.v | |
|
2 | pjpm.l | |
|
3 | pjpm.k | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 2 4 5 3 | pjfval | |
7 | inss1 | |
|
8 | 6 7 | eqsstri | |
9 | funmpt | |
|
10 | funss | |
|
11 | 8 9 10 | mp2 | |
12 | eqid | |
|
13 | ovexd | |
|
14 | 12 13 | fmpti | |
15 | fssxp | |
|
16 | ssrin | |
|
17 | 14 15 16 | mp2b | |
18 | 6 17 | eqsstri | |
19 | inxp | |
|
20 | inv1 | |
|
21 | incom | |
|
22 | inv1 | |
|
23 | 21 22 | eqtri | |
24 | 20 23 | xpeq12i | |
25 | 19 24 | eqtri | |
26 | 18 25 | sseqtri | |
27 | ovex | |
|
28 | 2 | fvexi | |
29 | 27 28 | elpm | |
30 | 11 26 29 | mpbir2an | |