Metamath Proof Explorer


Theorem pjssposi

Description: Projector ordering can be expressed by the subset relationship between their projection subspaces. (i)<->(iii) of Theorem 29.2 of Halmos p. 48. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjssposi x0projH-opprojGxihxGH

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 2 pjhcli xprojHx
4 normcl projHxnormprojHx
5 3 4 syl xnormprojHx
6 5 resqcld xnormprojHx2
7 1 pjhcli xprojGx
8 normcl projGxnormprojGx
9 7 8 syl xnormprojGx
10 9 resqcld xnormprojGx2
11 6 10 subge0d x0normprojHx2normprojGx2normprojGx2normprojHx2
12 2 pjfi projH:
13 1 pjfi projG:
14 hodval projH:projG:xprojH-opprojGx=projHx-projGx
15 12 13 14 mp3an12 xprojH-opprojGx=projHx-projGx
16 15 oveq1d xprojH-opprojGxihx=projHx-projGxihx
17 id xx
18 his2sub projHxprojGxxprojHx-projGxihx=projHxihxprojGxihx
19 3 7 17 18 syl3anc xprojHx-projGxihx=projHxihxprojGxihx
20 2 pjinormi xprojHxihx=normprojHx2
21 1 pjinormi xprojGxihx=normprojGx2
22 20 21 oveq12d xprojHxihxprojGxihx=normprojHx2normprojGx2
23 16 19 22 3eqtrd xprojH-opprojGxihx=normprojHx2normprojGx2
24 23 breq2d x0projH-opprojGxihx0normprojHx2normprojGx2
25 normge0 projGx0normprojGx
26 7 25 syl x0normprojGx
27 normge0 projHx0normprojHx
28 3 27 syl x0normprojHx
29 9 5 26 28 le2sqd xnormprojGxnormprojHxnormprojGx2normprojHx2
30 11 24 29 3bitr4d x0projH-opprojGxihxnormprojGxnormprojHx
31 30 ralbiia x0projH-opprojGxihxxnormprojGxnormprojHx
32 1 2 pjnormssi GHxnormprojGxnormprojHx
33 31 32 bitr4i x0projH-opprojGxihxGH