Metamath Proof Explorer


Theorem ply1annprmidl

Description: The set Q of polynomials annihilating an element A is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o O=EevalSub1F
ply1annig1p.p P=Poly1E𝑠F
ply1annig1p.b B=BaseE
ply1annig1p.e φEField
ply1annig1p.f φFSubDRingE
ply1annig1p.a φAB
ply1annig1p.0 0˙=0E
ply1annig1p.q Q=qdomO|OqA=0˙
Assertion ply1annprmidl Could not format assertion : No typesetting found for |- ( ph -> Q e. ( PrmIdeal ` P ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O=EevalSub1F
2 ply1annig1p.p P=Poly1E𝑠F
3 ply1annig1p.b B=BaseE
4 ply1annig1p.e φEField
5 ply1annig1p.f φFSubDRingE
6 ply1annig1p.a φAB
7 ply1annig1p.0 0˙=0E
8 ply1annig1p.q Q=qdomO|OqA=0˙
9 4 fldcrngd φECRing
10 issdrg FSubDRingEEDivRingFSubRingEE𝑠FDivRing
11 5 10 sylib φEDivRingFSubRingEE𝑠FDivRing
12 11 simp2d φFSubRingE
13 eqid pBasePOpA=pBasePOpA
14 1 2 3 9 12 6 7 8 13 ply1annidllem φQ=pBasePOpA-10˙
15 eqid BaseP=BaseP
16 1 2 3 15 9 12 6 13 evls1maprhm φpBasePOpAPRingHomE
17 fldidom EFieldEIDomn
18 7 prmidl0 Could not format ( ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) <-> E e. IDomn ) : No typesetting found for |- ( ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) <-> E e. IDomn ) with typecode |-
19 18 biimpri Could not format ( E e. IDomn -> ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) ) : No typesetting found for |- ( E e. IDomn -> ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) ) with typecode |-
20 4 17 19 3syl Could not format ( ph -> ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) ) : No typesetting found for |- ( ph -> ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) ) with typecode |-
21 20 simprd Could not format ( ph -> { .0. } e. ( PrmIdeal ` E ) ) : No typesetting found for |- ( ph -> { .0. } e. ( PrmIdeal ` E ) ) with typecode |-
22 eqid Could not format ( PrmIdeal ` P ) = ( PrmIdeal ` P ) : No typesetting found for |- ( PrmIdeal ` P ) = ( PrmIdeal ` P ) with typecode |-
23 22 rhmpreimaprmidl Could not format ( ( ( E e. CRing /\ ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) e. ( P RingHom E ) ) /\ { .0. } e. ( PrmIdeal ` E ) ) -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( PrmIdeal ` P ) ) : No typesetting found for |- ( ( ( E e. CRing /\ ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) e. ( P RingHom E ) ) /\ { .0. } e. ( PrmIdeal ` E ) ) -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( PrmIdeal ` P ) ) with typecode |-
24 9 16 21 23 syl21anc Could not format ( ph -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( PrmIdeal ` P ) ) : No typesetting found for |- ( ph -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( PrmIdeal ` P ) ) with typecode |-
25 14 24 eqeltrd Could not format ( ph -> Q e. ( PrmIdeal ` P ) ) : No typesetting found for |- ( ph -> Q e. ( PrmIdeal ` P ) ) with typecode |-