Metamath Proof Explorer


Theorem plycn

Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion plycn FPolySF:cn

Proof

Step Hyp Ref Expression
1 eqid coeffF=coeffF
2 eqid degF=degF
3 1 2 coeid FPolySF=zk=0degFcoeffFkzk
4 eqid TopOpenfld=TopOpenfld
5 4 cnfldtopon TopOpenfldTopOn
6 5 a1i FPolySTopOpenfldTopOn
7 fzfid FPolyS0degFFin
8 5 a1i FPolySk0degFTopOpenfldTopOn
9 1 coef3 FPolyScoeffF:0
10 elfznn0 k0degFk0
11 ffvelcdm coeffF:0k0coeffFk
12 9 10 11 syl2an FPolySk0degFcoeffFk
13 8 8 12 cnmptc FPolySk0degFzcoeffFkTopOpenfldCnTopOpenfld
14 10 adantl FPolySk0degFk0
15 4 expcn k0zzkTopOpenfldCnTopOpenfld
16 14 15 syl FPolySk0degFzzkTopOpenfldCnTopOpenfld
17 4 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
18 17 a1i FPolySk0degF×TopOpenfld×tTopOpenfldCnTopOpenfld
19 8 13 16 18 cnmpt12f FPolySk0degFzcoeffFkzkTopOpenfldCnTopOpenfld
20 4 6 7 19 fsumcn FPolySzk=0degFcoeffFkzkTopOpenfldCnTopOpenfld
21 3 20 eqeltrd FPolySFTopOpenfldCnTopOpenfld
22 4 cncfcn1 cn=TopOpenfldCnTopOpenfld
23 21 22 eleqtrrdi FPolySF:cn