Metamath Proof Explorer


Theorem plycpn

Description: Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion plycpn FPolySFranCn

Proof

Step Hyp Ref Expression
1 plyf FPolySF:
2 1 adantr FPolySn0F:
3 cnex V
4 3 3 fpm F:F𝑝𝑚
5 2 4 syl FPolySn0F𝑝𝑚
6 dvnply FPolySn0DnFnPoly
7 plycn DnFnPolyDnFn:cn
8 6 7 syl FPolySn0DnFn:cn
9 2 fdmd FPolySn0domF=
10 9 oveq1d FPolySn0domFcn=cn
11 8 10 eleqtrrd FPolySn0DnFn:domFcn
12 ssidd FPolyS
13 elcpn n0FCnnF𝑝𝑚DnFn:domFcn
14 12 13 sylan FPolySn0FCnnF𝑝𝑚DnFn:domFcn
15 5 11 14 mpbir2and FPolySn0FCnn
16 15 ralrimiva FPolySn0FCnn
17 ssid
18 fncpn CnFn0
19 eleq2 x=CnnFxFCnn
20 19 ralrn CnFn0xranCnFxn0FCnn
21 17 18 20 mp2b xranCnFxn0FCnn
22 16 21 sylibr FPolySxranCnFx
23 elintg FPolySFranCnxranCnFx
24 22 23 mpbird FPolySFranCn