Description: Lemma 2 for pm2mpghm . (Contributed by AV, 15-Oct-2019) (Revised by AV, 4-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2mpfo.p | |
|
pm2mpfo.c | |
||
pm2mpfo.b | |
||
pm2mpfo.m | |
||
pm2mpfo.e | |
||
pm2mpfo.x | |
||
pm2mpfo.a | |
||
pm2mpfo.q | |
||
Assertion | pm2mpghmlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpfo.p | |
|
2 | pm2mpfo.c | |
|
3 | pm2mpfo.b | |
|
4 | pm2mpfo.m | |
|
5 | pm2mpfo.e | |
|
6 | pm2mpfo.x | |
|
7 | pm2mpfo.a | |
|
8 | pm2mpfo.q | |
|
9 | nn0ex | |
|
10 | 9 | a1i | |
11 | 7 | matring | |
12 | 11 | 3adant3 | |
13 | 8 | ply1lmod | |
14 | 12 13 | syl | |
15 | 8 | ply1sca | |
16 | 12 15 | syl | |
17 | eqid | |
|
18 | simpl2 | |
|
19 | simpl3 | |
|
20 | simpr | |
|
21 | eqid | |
|
22 | 1 2 3 7 21 | decpmatcl | |
23 | 18 19 20 22 | syl3anc | |
24 | eqid | |
|
25 | 8 6 24 5 17 | ply1moncl | |
26 | 12 25 | sylan | |
27 | eqid | |
|
28 | eqid | |
|
29 | 1 2 3 7 28 | decpmatfsupp | |
30 | 29 | 3adant1 | |
31 | 10 14 16 17 23 26 27 28 4 30 | mptscmfsupp0 | |