Metamath Proof Explorer


Theorem pm2mpghmlem2

Description: Lemma 2 for pm2mpghm . (Contributed by AV, 15-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P=Poly1R
pm2mpfo.c C=NMatP
pm2mpfo.b B=BaseC
pm2mpfo.m ˙=Q
pm2mpfo.e ×˙=mulGrpQ
pm2mpfo.x X=var1A
pm2mpfo.a A=NMatR
pm2mpfo.q Q=Poly1A
Assertion pm2mpghmlem2 NFinRRingMBfinSupp0Qk0MdecompPMatk˙k×˙X

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P=Poly1R
2 pm2mpfo.c C=NMatP
3 pm2mpfo.b B=BaseC
4 pm2mpfo.m ˙=Q
5 pm2mpfo.e ×˙=mulGrpQ
6 pm2mpfo.x X=var1A
7 pm2mpfo.a A=NMatR
8 pm2mpfo.q Q=Poly1A
9 nn0ex 0V
10 9 a1i NFinRRingMB0V
11 7 matring NFinRRingARing
12 11 3adant3 NFinRRingMBARing
13 8 ply1lmod ARingQLMod
14 12 13 syl NFinRRingMBQLMod
15 8 ply1sca ARingA=ScalarQ
16 12 15 syl NFinRRingMBA=ScalarQ
17 eqid BaseQ=BaseQ
18 simpl2 NFinRRingMBk0RRing
19 simpl3 NFinRRingMBk0MB
20 simpr NFinRRingMBk0k0
21 eqid BaseA=BaseA
22 1 2 3 7 21 decpmatcl RRingMBk0MdecompPMatkBaseA
23 18 19 20 22 syl3anc NFinRRingMBk0MdecompPMatkBaseA
24 eqid mulGrpQ=mulGrpQ
25 8 6 24 5 17 ply1moncl ARingk0k×˙XBaseQ
26 12 25 sylan NFinRRingMBk0k×˙XBaseQ
27 eqid 0Q=0Q
28 eqid 0A=0A
29 1 2 3 7 28 decpmatfsupp RRingMBfinSupp0Ak0MdecompPMatk
30 29 3adant1 NFinRRingMBfinSupp0Ak0MdecompPMatk
31 10 14 16 17 23 26 27 28 4 30 mptscmfsupp0 NFinRRingMBfinSupp0Qk0MdecompPMatk˙k×˙X