Metamath Proof Explorer


Theorem pmapglb2N

Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. Allows S = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapglb2.b B=BaseK
pmapglb2.g G=glbK
pmapglb2.a A=AtomsK
pmapglb2.m M=pmapK
Assertion pmapglb2N KHLSBMGS=AxSMx

Proof

Step Hyp Ref Expression
1 pmapglb2.b B=BaseK
2 pmapglb2.g G=glbK
3 pmapglb2.a A=AtomsK
4 pmapglb2.m M=pmapK
5 hlop KHLKOP
6 eqid 1.K=1.K
7 2 6 glb0N KOPG=1.K
8 7 fveq2d KOPMG=M1.K
9 6 3 4 pmap1N KOPM1.K=A
10 8 9 eqtrd KOPMG=A
11 5 10 syl KHLMG=A
12 2fveq3 S=MGS=MG
13 riin0 S=AxSMx=A
14 12 13 eqeq12d S=MGS=AxSMxMG=A
15 11 14 syl5ibrcom KHLS=MGS=AxSMx
16 15 adantr KHLSBS=MGS=AxSMx
17 1 2 4 pmapglb KHLSBSMGS=xSMx
18 simpr KHLSBxSxS
19 simpll KHLSBxSKHL
20 ssel2 SBxSxB
21 20 adantll KHLSBxSxB
22 1 3 4 pmapssat KHLxBMxA
23 19 21 22 syl2anc KHLSBxSMxA
24 18 23 jca KHLSBxSxSMxA
25 24 ex KHLSBxSxSMxA
26 25 eximdv KHLSBxxSxxSMxA
27 n0 SxxS
28 df-rex xSMxAxxSMxA
29 26 27 28 3imtr4g KHLSBSxSMxA
30 29 3impia KHLSBSxSMxA
31 iinss xSMxAxSMxA
32 30 31 syl KHLSBSxSMxA
33 sseqin2 xSMxAAxSMx=xSMx
34 32 33 sylib KHLSBSAxSMx=xSMx
35 17 34 eqtr4d KHLSBSMGS=AxSMx
36 35 3expia KHLSBSMGS=AxSMx
37 16 36 pm2.61dne KHLSBMGS=AxSMx