| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr |  | 
						
							| 2 | 1 | elin2d |  | 
						
							| 3 |  | simprl |  | 
						
							| 4 |  | nelne2 |  | 
						
							| 5 | 2 3 4 | syl2anc |  | 
						
							| 6 |  | velsn |  | 
						
							| 7 | 6 | necon3bbii |  | 
						
							| 8 | 5 7 | sylibr |  | 
						
							| 9 | 1 | elin1d |  | 
						
							| 10 |  | 2z |  | 
						
							| 11 |  | zcn |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | ax-1cn |  | 
						
							| 14 |  | pncan |  | 
						
							| 15 | 12 13 14 | sylancl |  | 
						
							| 16 |  | elfzuz2 |  | 
						
							| 17 |  | uz2m1nn |  | 
						
							| 18 | 9 16 17 | 3syl |  | 
						
							| 19 | 15 18 | eqeltrrd |  | 
						
							| 20 |  | nnuz |  | 
						
							| 21 |  | 2m1e1 |  | 
						
							| 22 | 21 | fveq2i |  | 
						
							| 23 | 20 22 | eqtr4i |  | 
						
							| 24 | 19 23 | eleqtrdi |  | 
						
							| 25 |  | fzsuc2 |  | 
						
							| 26 | 10 24 25 | sylancr |  | 
						
							| 27 | 9 26 | eleqtrd |  | 
						
							| 28 |  | elun |  | 
						
							| 29 | 27 28 | sylib |  | 
						
							| 30 | 29 | ord |  | 
						
							| 31 | 8 30 | mt3d |  | 
						
							| 32 | 31 2 | elind |  | 
						
							| 33 | 32 | expr |  | 
						
							| 34 | 33 | ssrdv |  | 
						
							| 35 |  | uzid |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | peano2uz |  | 
						
							| 38 |  | fzss2 |  | 
						
							| 39 |  | ssrin |  | 
						
							| 40 | 36 37 38 39 | 4syl |  | 
						
							| 41 | 34 40 | eqssd |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 |  | peano2z |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 |  | ppival2 |  | 
						
							| 46 | 44 45 | syl |  | 
						
							| 47 |  | ppival2 |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 42 46 48 | 3eqtr4d |  |