Metamath Proof Explorer


Theorem prdsinvgd

Description: Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsgrpd.y Y=S𝑠R
prdsgrpd.i φIW
prdsgrpd.s φSV
prdsgrpd.r φR:IGrp
prdsinvgd.b B=BaseY
prdsinvgd.n N=invgY
prdsinvgd.x φXB
Assertion prdsinvgd φNX=xIinvgRxXx

Proof

Step Hyp Ref Expression
1 prdsgrpd.y Y=S𝑠R
2 prdsgrpd.i φIW
3 prdsgrpd.s φSV
4 prdsgrpd.r φR:IGrp
5 prdsinvgd.b B=BaseY
6 prdsinvgd.n N=invgY
7 prdsinvgd.x φXB
8 eqid +Y=+Y
9 3 elexd φSV
10 2 elexd φIV
11 eqid 0𝑔R=0𝑔R
12 eqid xIinvgRxXx=xIinvgRxXx
13 1 5 8 9 10 4 7 11 12 prdsinvlem φxIinvgRxXxBxIinvgRxXx+YX=0𝑔R
14 13 simprd φxIinvgRxXx+YX=0𝑔R
15 grpmnd aGrpaMnd
16 15 ssriv GrpMnd
17 fss R:IGrpGrpMndR:IMnd
18 4 16 17 sylancl φR:IMnd
19 1 2 3 18 prds0g φ0𝑔R=0Y
20 14 19 eqtrd φxIinvgRxXx+YX=0Y
21 1 2 3 4 prdsgrpd φYGrp
22 13 simpld φxIinvgRxXxB
23 eqid 0Y=0Y
24 5 8 23 6 grpinvid2 YGrpXBxIinvgRxXxBNX=xIinvgRxXxxIinvgRxXx+YX=0Y
25 21 7 22 24 syl3anc φNX=xIinvgRxXxxIinvgRxXx+YX=0Y
26 20 25 mpbird φNX=xIinvgRxXx