Metamath Proof Explorer


Theorem prdsplusg

Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
prdsplusg.b +˙=+P
Assertion prdsplusg φ+˙=fB,gBxIfx+Rxgx

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 prdsplusg.b +˙=+P
7 eqid BaseS=BaseS
8 1 2 3 4 5 prdsbas φB=xIBaseRx
9 eqidd φfB,gBxIfx+Rxgx=fB,gBxIfx+Rxgx
10 eqidd φfB,gBxIfxRxgx=fB,gBxIfxRxgx
11 eqidd φfBaseS,gBxIfRxgx=fBaseS,gBxIfRxgx
12 eqidd φfB,gBSxIfx𝑖Rxgx=fB,gBSxIfx𝑖Rxgx
13 eqidd φ𝑡TopOpenR=𝑡TopOpenR
14 eqidd φfg|fgBxIfxRxgx=fg|fgBxIfxRxgx
15 eqidd φfB,gBsupranxIfxdistRxgx0*<=fB,gBsupranxIfxdistRxgx0*<
16 eqidd φfB,gBxIfxHomRxgx=fB,gBxIfxHomRxgx
17 eqidd φaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=aB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
18 1 7 5 8 9 10 11 12 13 14 15 16 17 2 3 prdsval φP=BasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
19 plusgid +𝑔=Slot+ndx
20 ovssunirn fx+Rxgxran+Rx
21 19 strfvss +RxranRx
22 fvssunirn RxranR
23 rnss RxranRranRxranranR
24 uniss ranRxranranRranRxranranR
25 22 23 24 mp2b ranRxranranR
26 21 25 sstri +RxranranR
27 rnss +RxranranRran+RxranranranR
28 uniss ran+RxranranranRran+RxranranranR
29 26 27 28 mp2b ran+RxranranranR
30 20 29 sstri fx+RxgxranranranR
31 ovex fx+RxgxV
32 31 elpw fx+Rxgx𝒫ranranranRfx+RxgxranranranR
33 30 32 mpbir fx+Rxgx𝒫ranranranR
34 33 a1i φxIfx+Rxgx𝒫ranranranR
35 34 fmpttd φxIfx+Rxgx:I𝒫ranranranR
36 rnexg RWranRV
37 uniexg ranRVranRV
38 3 36 37 3syl φranRV
39 rnexg ranRVranranRV
40 uniexg ranranRVranranRV
41 38 39 40 3syl φranranRV
42 rnexg ranranRVranranranRV
43 uniexg ranranranRVranranranRV
44 pwexg ranranranRV𝒫ranranranRV
45 41 42 43 44 4syl φ𝒫ranranranRV
46 3 dmexd φdomRV
47 5 46 eqeltrrd φIV
48 45 47 elmapd φxIfx+Rxgx𝒫ranranranRIxIfx+Rxgx:I𝒫ranranranR
49 35 48 mpbird φxIfx+Rxgx𝒫ranranranRI
50 49 ralrimivw φgBxIfx+Rxgx𝒫ranranranRI
51 50 ralrimivw φfBgBxIfx+Rxgx𝒫ranranranRI
52 eqid fB,gBxIfx+Rxgx=fB,gBxIfx+Rxgx
53 52 fmpo fBgBxIfx+Rxgx𝒫ranranranRIfB,gBxIfx+Rxgx:B×B𝒫ranranranRI
54 51 53 sylib φfB,gBxIfx+Rxgx:B×B𝒫ranranranRI
55 4 fvexi BV
56 55 55 xpex B×BV
57 ovex 𝒫ranranranRIV
58 fex2 fB,gBxIfx+Rxgx:B×B𝒫ranranranRIB×BV𝒫ranranranRIVfB,gBxIfx+RxgxV
59 56 57 58 mp3an23 fB,gBxIfx+Rxgx:B×B𝒫ranranranRIfB,gBxIfx+RxgxV
60 54 59 syl φfB,gBxIfx+RxgxV
61 snsstp2 +ndxfB,gBxIfx+RxgxBasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgx
62 ssun1 BasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxBasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
63 61 62 sstri +ndxfB,gBxIfx+RxgxBasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
64 ssun1 BasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
65 63 64 sstri +ndxfB,gBxIfx+RxgxBasendxB+ndxfB,gBxIfx+RxgxndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
66 18 6 19 60 65 prdsbaslem φ+˙=fB,gBxIfx+Rxgx