Metamath Proof Explorer


Theorem prdsplusg

Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdsplusg.b + ˙ = + P
Assertion prdsplusg φ + ˙ = f B , g B x I f x + R x g x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdsplusg.b + ˙ = + P
7 eqid Base S = Base S
8 1 2 3 4 5 prdsbas φ B = x I Base R x
9 eqidd φ f B , g B x I f x + R x g x = f B , g B x I f x + R x g x
10 eqidd φ f B , g B x I f x R x g x = f B , g B x I f x R x g x
11 eqidd φ f Base S , g B x I f R x g x = f Base S , g B x I f R x g x
12 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
13 eqidd φ 𝑡 TopOpen R = 𝑡 TopOpen R
14 eqidd φ f g | f g B x I f x R x g x = f g | f g B x I f x R x g x
15 eqidd φ f B , g B sup ran x I f x dist R x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
16 eqidd φ f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
17 eqidd φ a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
18 1 7 5 8 9 10 11 12 13 14 15 16 17 2 3 prdsval φ P = Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
19 plusgid + 𝑔 = Slot + ndx
20 ovssunirn f x + R x g x ran + R x
21 19 strfvss + R x ran R x
22 fvssunirn R x ran R
23 rnss R x ran R ran R x ran ran R
24 uniss ran R x ran ran R ran R x ran ran R
25 22 23 24 mp2b ran R x ran ran R
26 21 25 sstri + R x ran ran R
27 rnss + R x ran ran R ran + R x ran ran ran R
28 uniss ran + R x ran ran ran R ran + R x ran ran ran R
29 26 27 28 mp2b ran + R x ran ran ran R
30 20 29 sstri f x + R x g x ran ran ran R
31 ovex f x + R x g x V
32 31 elpw f x + R x g x 𝒫 ran ran ran R f x + R x g x ran ran ran R
33 30 32 mpbir f x + R x g x 𝒫 ran ran ran R
34 33 a1i φ x I f x + R x g x 𝒫 ran ran ran R
35 34 fmpttd φ x I f x + R x g x : I 𝒫 ran ran ran R
36 rnexg R W ran R V
37 uniexg ran R V ran R V
38 3 36 37 3syl φ ran R V
39 rnexg ran R V ran ran R V
40 uniexg ran ran R V ran ran R V
41 38 39 40 3syl φ ran ran R V
42 rnexg ran ran R V ran ran ran R V
43 uniexg ran ran ran R V ran ran ran R V
44 pwexg ran ran ran R V 𝒫 ran ran ran R V
45 41 42 43 44 4syl φ 𝒫 ran ran ran R V
46 3 dmexd φ dom R V
47 5 46 eqeltrrd φ I V
48 45 47 elmapd φ x I f x + R x g x 𝒫 ran ran ran R I x I f x + R x g x : I 𝒫 ran ran ran R
49 35 48 mpbird φ x I f x + R x g x 𝒫 ran ran ran R I
50 49 ralrimivw φ g B x I f x + R x g x 𝒫 ran ran ran R I
51 50 ralrimivw φ f B g B x I f x + R x g x 𝒫 ran ran ran R I
52 eqid f B , g B x I f x + R x g x = f B , g B x I f x + R x g x
53 52 fmpo f B g B x I f x + R x g x 𝒫 ran ran ran R I f B , g B x I f x + R x g x : B × B 𝒫 ran ran ran R I
54 51 53 sylib φ f B , g B x I f x + R x g x : B × B 𝒫 ran ran ran R I
55 4 fvexi B V
56 55 55 xpex B × B V
57 ovex 𝒫 ran ran ran R I V
58 fex2 f B , g B x I f x + R x g x : B × B 𝒫 ran ran ran R I B × B V 𝒫 ran ran ran R I V f B , g B x I f x + R x g x V
59 56 57 58 mp3an23 f B , g B x I f x + R x g x : B × B 𝒫 ran ran ran R I f B , g B x I f x + R x g x V
60 54 59 syl φ f B , g B x I f x + R x g x V
61 snsstp2 + ndx f B , g B x I f x + R x g x Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x
62 ssun1 Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
63 61 62 sstri + ndx f B , g B x I f x + R x g x Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
64 ssun1 Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
65 63 64 sstri + ndx f B , g B x I f x + R x g x Base ndx B + ndx f B , g B x I f x + R x g x ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d c f B , g B x I f x Hom R x g x 2 nd a , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
66 18 6 19 60 65 prdsvallem φ + ˙ = f B , g B x I f x + R x g x