Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdstopn.y | |
|
prdstopn.s | |
||
prdstopn.i | |
||
prdstps.r | |
||
Assertion | prdstps | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdstopn.y | |
|
2 | prdstopn.s | |
|
3 | prdstopn.i | |
|
4 | prdstps.r | |
|
5 | 4 | ffvelcdmda | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | istps | |
9 | 5 8 | sylib | |
10 | 9 | ralrimiva | |
11 | eqid | |
|
12 | 11 | pttopon | |
13 | 3 10 12 | syl2anc | |
14 | 4 3 | fexd | |
15 | eqid | |
|
16 | 4 | fdmd | |
17 | eqid | |
|
18 | 1 2 14 15 16 17 | prdstset | |
19 | topnfn | |
|
20 | dffn2 | |
|
21 | 19 20 | mpbi | |
22 | ssv | |
|
23 | fss | |
|
24 | 4 22 23 | sylancl | |
25 | fcompt | |
|
26 | 21 24 25 | sylancr | |
27 | 26 | fveq2d | |
28 | 18 27 | eqtrd | |
29 | 1 2 14 15 16 | prdsbas | |
30 | 29 | fveq2d | |
31 | 13 28 30 | 3eltr4d | |
32 | 15 17 | tsettps | |
33 | 31 32 | syl | |