Metamath Proof Explorer


Theorem prdstps

Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y Y=S𝑠R
prdstopn.s φSV
prdstopn.i φIW
prdstps.r φR:ITopSp
Assertion prdstps φYTopSp

Proof

Step Hyp Ref Expression
1 prdstopn.y Y=S𝑠R
2 prdstopn.s φSV
3 prdstopn.i φIW
4 prdstps.r φR:ITopSp
5 4 ffvelcdmda φxIRxTopSp
6 eqid BaseRx=BaseRx
7 eqid TopOpenRx=TopOpenRx
8 6 7 istps RxTopSpTopOpenRxTopOnBaseRx
9 5 8 sylib φxITopOpenRxTopOnBaseRx
10 9 ralrimiva φxITopOpenRxTopOnBaseRx
11 eqid 𝑡xITopOpenRx=𝑡xITopOpenRx
12 11 pttopon IWxITopOpenRxTopOnBaseRx𝑡xITopOpenRxTopOnxIBaseRx
13 3 10 12 syl2anc φ𝑡xITopOpenRxTopOnxIBaseRx
14 4 3 fexd φRV
15 eqid BaseY=BaseY
16 4 fdmd φdomR=I
17 eqid TopSetY=TopSetY
18 1 2 14 15 16 17 prdstset φTopSetY=𝑡TopOpenR
19 topnfn TopOpenFnV
20 dffn2 TopOpenFnVTopOpen:VV
21 19 20 mpbi TopOpen:VV
22 ssv TopSpV
23 fss R:ITopSpTopSpVR:IV
24 4 22 23 sylancl φR:IV
25 fcompt TopOpen:VVR:IVTopOpenR=xITopOpenRx
26 21 24 25 sylancr φTopOpenR=xITopOpenRx
27 26 fveq2d φ𝑡TopOpenR=𝑡xITopOpenRx
28 18 27 eqtrd φTopSetY=𝑡xITopOpenRx
29 1 2 14 15 16 prdsbas φBaseY=xIBaseRx
30 29 fveq2d φTopOnBaseY=TopOnxIBaseRx
31 13 28 30 3eltr4d φTopSetYTopOnBaseY
32 15 17 tsettps TopSetYTopOnBaseYYTopSp
33 31 32 syl φYTopSp