Metamath Proof Explorer


Theorem prdstps

Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y Y = S 𝑠 R
prdstopn.s φ S V
prdstopn.i φ I W
prdstps.r φ R : I TopSp
Assertion prdstps φ Y TopSp

Proof

Step Hyp Ref Expression
1 prdstopn.y Y = S 𝑠 R
2 prdstopn.s φ S V
3 prdstopn.i φ I W
4 prdstps.r φ R : I TopSp
5 4 ffvelrnda φ x I R x TopSp
6 eqid Base R x = Base R x
7 eqid TopOpen R x = TopOpen R x
8 6 7 istps R x TopSp TopOpen R x TopOn Base R x
9 5 8 sylib φ x I TopOpen R x TopOn Base R x
10 9 ralrimiva φ x I TopOpen R x TopOn Base R x
11 eqid 𝑡 x I TopOpen R x = 𝑡 x I TopOpen R x
12 11 pttopon I W x I TopOpen R x TopOn Base R x 𝑡 x I TopOpen R x TopOn x I Base R x
13 3 10 12 syl2anc φ 𝑡 x I TopOpen R x TopOn x I Base R x
14 fex R : I TopSp I W R V
15 4 3 14 syl2anc φ R V
16 eqid Base Y = Base Y
17 4 fdmd φ dom R = I
18 eqid TopSet Y = TopSet Y
19 1 2 15 16 17 18 prdstset φ TopSet Y = 𝑡 TopOpen R
20 topnfn TopOpen Fn V
21 dffn2 TopOpen Fn V TopOpen : V V
22 20 21 mpbi TopOpen : V V
23 ssv TopSp V
24 fss R : I TopSp TopSp V R : I V
25 4 23 24 sylancl φ R : I V
26 fcompt TopOpen : V V R : I V TopOpen R = x I TopOpen R x
27 22 25 26 sylancr φ TopOpen R = x I TopOpen R x
28 27 fveq2d φ 𝑡 TopOpen R = 𝑡 x I TopOpen R x
29 19 28 eqtrd φ TopSet Y = 𝑡 x I TopOpen R x
30 1 2 15 16 17 prdsbas φ Base Y = x I Base R x
31 30 fveq2d φ TopOn Base Y = TopOn x I Base R x
32 13 29 31 3eltr4d φ TopSet Y TopOn Base Y
33 16 18 tsettps TopSet Y TopOn Base Y Y TopSp
34 32 33 syl φ Y TopSp