| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjspval.b |
|
| 2 |
|
prjspval.x |
|
| 3 |
|
prjspval.s |
|
| 4 |
|
prjspval.k |
|
| 5 |
|
fvex |
|
| 6 |
5
|
difexi |
|
| 7 |
6
|
a1i |
|
| 8 |
|
fveq2 |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
sneqd |
|
| 11 |
8 10
|
difeq12d |
|
| 12 |
11 1
|
eqtr4di |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
biimpd |
|
| 15 |
14
|
imp |
|
| 16 |
14
|
imdistani |
|
| 17 |
|
eleq2 |
|
| 18 |
|
eleq2 |
|
| 19 |
17 18
|
anbi12d |
|
| 20 |
|
fveq2 |
|
| 21 |
20 3
|
eqtr4di |
|
| 22 |
21
|
fveq2d |
|
| 23 |
22 4
|
eqtr4di |
|
| 24 |
|
fveq2 |
|
| 25 |
24 2
|
eqtr4di |
|
| 26 |
25
|
oveqd |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
23 27
|
rexeqbidv |
|
| 29 |
19 28
|
bi2anan9r |
|
| 30 |
16 29
|
syl |
|
| 31 |
30
|
opabbidv |
|
| 32 |
15 31
|
qseq12d |
|
| 33 |
7 32
|
csbied |
|
| 34 |
|
df-prjsp |
|
| 35 |
|
fvex |
|
| 36 |
35
|
difexi |
|
| 37 |
1 36
|
eqeltri |
|
| 38 |
37
|
qsex |
|
| 39 |
33 34 38
|
fvmpt |
|