Metamath Proof Explorer


Theorem prmgaplcmlem2

Description: Lemma for prmgaplcm : The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020) (Revised by AV, 27-Aug-2020)

Ref Expression
Assertion prmgaplcmlem2 NI2N1<lcm_1N+IgcdI

Proof

Step Hyp Ref Expression
1 elfzuz I2NI2
2 1 adantl NI2NI2
3 breq1 i=Iilcm_1N+IIlcm_1N+I
4 breq1 i=IiIII
5 3 4 anbi12d i=Iilcm_1N+IiIIlcm_1N+III
6 5 adantl NI2Ni=Iilcm_1N+IiIIlcm_1N+III
7 prmgaplcmlem1 NI2NIlcm_1N+I
8 elfzelz I2NI
9 iddvds III
10 8 9 syl I2NII
11 10 adantl NI2NII
12 7 11 jca NI2NIlcm_1N+III
13 2 6 12 rspcedvd NI2Ni2ilcm_1N+IiI
14 fzssz 1N
15 fzfid N1NFin
16 0nelfz1 01N
17 16 a1i N01N
18 lcmfn0cl 1N1NFin01Nlcm_1N
19 14 15 17 18 mp3an2i Nlcm_1N
20 19 adantr NI2Nlcm_1N
21 eluz2nn I2I
22 1 21 syl I2NI
23 22 adantl NI2NI
24 20 23 nnaddcld NI2Nlcm_1N+I
25 ncoprmgcdgt1b lcm_1N+IIi2ilcm_1N+IiI1<lcm_1N+IgcdI
26 24 23 25 syl2anc NI2Ni2ilcm_1N+IiI1<lcm_1N+IgcdI
27 13 26 mpbid NI2N1<lcm_1N+IgcdI