Metamath Proof Explorer


Theorem prodeq1f

Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017)

Ref Expression
Hypotheses prodeq1f.1 _kA
prodeq1f.2 _kB
Assertion prodeq1f A=BkAC=kBC

Proof

Step Hyp Ref Expression
1 prodeq1f.1 _kA
2 prodeq1f.2 _kB
3 sseq1 A=BAmBm
4 1 2 nfeq kA=B
5 eleq2 A=BkAkB
6 5 ifbid A=BifkAC1=ifkBC1
7 6 adantr A=BkifkAC1=ifkBC1
8 4 7 mpteq2da A=BkifkAC1=kifkBC1
9 8 seqeq3d A=Bseqn×kifkAC1=seqn×kifkBC1
10 9 breq1d A=Bseqn×kifkAC1yseqn×kifkBC1y
11 10 anbi2d A=By0seqn×kifkAC1yy0seqn×kifkBC1y
12 11 exbidv A=Byy0seqn×kifkAC1yyy0seqn×kifkBC1y
13 12 rexbidv A=Bnmyy0seqn×kifkAC1ynmyy0seqn×kifkBC1y
14 8 seqeq3d A=Bseqm×kifkAC1=seqm×kifkBC1
15 14 breq1d A=Bseqm×kifkAC1xseqm×kifkBC1x
16 3 13 15 3anbi123d A=BAmnmyy0seqn×kifkAC1yseqm×kifkAC1xBmnmyy0seqn×kifkBC1yseqm×kifkBC1x
17 16 rexbidv A=BmAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmBmnmyy0seqn×kifkBC1yseqm×kifkBC1x
18 f1oeq3 A=Bf:1m1-1 ontoAf:1m1-1 ontoB
19 18 anbi1d A=Bf:1m1-1 ontoAx=seq1×nfn/kCmf:1m1-1 ontoBx=seq1×nfn/kCm
20 19 exbidv A=Bff:1m1-1 ontoAx=seq1×nfn/kCmff:1m1-1 ontoBx=seq1×nfn/kCm
21 20 rexbidv A=Bmff:1m1-1 ontoAx=seq1×nfn/kCmmff:1m1-1 ontoBx=seq1×nfn/kCm
22 17 21 orbi12d A=BmAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCmmBmnmyy0seqn×kifkBC1yseqm×kifkBC1xmff:1m1-1 ontoBx=seq1×nfn/kCm
23 22 iotabidv A=Bιx|mAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm=ιx|mBmnmyy0seqn×kifkBC1yseqm×kifkBC1xmff:1m1-1 ontoBx=seq1×nfn/kCm
24 df-prod kAC=ιx|mAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
25 df-prod kBC=ιx|mBmnmyy0seqn×kifkBC1yseqm×kifkBC1xmff:1m1-1 ontoBx=seq1×nfn/kCm
26 23 24 25 3eqtr4g A=BkAC=kBC