Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodeq1f.1 | |
|
prodeq1f.2 | |
||
Assertion | prodeq1f | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1f.1 | |
|
2 | prodeq1f.2 | |
|
3 | sseq1 | |
|
4 | 1 2 | nfeq | |
5 | eleq2 | |
|
6 | 5 | ifbid | |
7 | 6 | adantr | |
8 | 4 7 | mpteq2da | |
9 | 8 | seqeq3d | |
10 | 9 | breq1d | |
11 | 10 | anbi2d | |
12 | 11 | exbidv | |
13 | 12 | rexbidv | |
14 | 8 | seqeq3d | |
15 | 14 | breq1d | |
16 | 3 13 15 | 3anbi123d | |
17 | 16 | rexbidv | |
18 | f1oeq3 | |
|
19 | 18 | anbi1d | |
20 | 19 | exbidv | |
21 | 20 | rexbidv | |
22 | 17 21 | orbi12d | |
23 | 22 | iotabidv | |
24 | df-prod | |
|
25 | df-prod | |
|
26 | 23 24 25 | 3eqtr4g | |