Metamath Proof Explorer


Theorem prodfrec

Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Hypotheses prodfn0.1 φNM
prodfn0.2 φkMNFk
prodfn0.3 φkMNFk0
prodfrec.4 φkMNGk=1Fk
Assertion prodfrec φseqM×GN=1seqM×FN

Proof

Step Hyp Ref Expression
1 prodfn0.1 φNM
2 prodfn0.2 φkMNFk
3 prodfn0.3 φkMNFk0
4 prodfrec.4 φkMNGk=1Fk
5 eluzfz2 NMNMN
6 1 5 syl φNMN
7 fveq2 m=MseqM×Gm=seqM×GM
8 fveq2 m=MseqM×Fm=seqM×FM
9 8 oveq2d m=M1seqM×Fm=1seqM×FM
10 7 9 eqeq12d m=MseqM×Gm=1seqM×FmseqM×GM=1seqM×FM
11 10 imbi2d m=MφseqM×Gm=1seqM×FmφseqM×GM=1seqM×FM
12 fveq2 m=nseqM×Gm=seqM×Gn
13 fveq2 m=nseqM×Fm=seqM×Fn
14 13 oveq2d m=n1seqM×Fm=1seqM×Fn
15 12 14 eqeq12d m=nseqM×Gm=1seqM×FmseqM×Gn=1seqM×Fn
16 15 imbi2d m=nφseqM×Gm=1seqM×FmφseqM×Gn=1seqM×Fn
17 fveq2 m=n+1seqM×Gm=seqM×Gn+1
18 fveq2 m=n+1seqM×Fm=seqM×Fn+1
19 18 oveq2d m=n+11seqM×Fm=1seqM×Fn+1
20 17 19 eqeq12d m=n+1seqM×Gm=1seqM×FmseqM×Gn+1=1seqM×Fn+1
21 20 imbi2d m=n+1φseqM×Gm=1seqM×FmφseqM×Gn+1=1seqM×Fn+1
22 fveq2 m=NseqM×Gm=seqM×GN
23 fveq2 m=NseqM×Fm=seqM×FN
24 23 oveq2d m=N1seqM×Fm=1seqM×FN
25 22 24 eqeq12d m=NseqM×Gm=1seqM×FmseqM×GN=1seqM×FN
26 25 imbi2d m=NφseqM×Gm=1seqM×FmφseqM×GN=1seqM×FN
27 eluzfz1 NMMMN
28 1 27 syl φMMN
29 fveq2 k=MGk=GM
30 fveq2 k=MFk=FM
31 30 oveq2d k=M1Fk=1FM
32 29 31 eqeq12d k=MGk=1FkGM=1FM
33 32 imbi2d k=MφGk=1FkφGM=1FM
34 4 expcom kMNφGk=1Fk
35 33 34 vtoclga MMNφGM=1FM
36 28 35 mpcom φGM=1FM
37 eluzel2 NMM
38 1 37 syl φM
39 seq1 MseqM×GM=GM
40 38 39 syl φseqM×GM=GM
41 seq1 MseqM×FM=FM
42 38 41 syl φseqM×FM=FM
43 42 oveq2d φ1seqM×FM=1FM
44 36 40 43 3eqtr4d φseqM×GM=1seqM×FM
45 44 a1i NMφseqM×GM=1seqM×FM
46 oveq1 seqM×Gn=1seqM×FnseqM×GnGn+1=1seqM×FnGn+1
47 46 3ad2ant3 φnM..^NseqM×Gn=1seqM×FnseqM×GnGn+1=1seqM×FnGn+1
48 fzofzp1 nM..^Nn+1MN
49 fveq2 k=n+1Gk=Gn+1
50 fveq2 k=n+1Fk=Fn+1
51 50 oveq2d k=n+11Fk=1Fn+1
52 49 51 eqeq12d k=n+1Gk=1FkGn+1=1Fn+1
53 52 imbi2d k=n+1φGk=1FkφGn+1=1Fn+1
54 53 34 vtoclga n+1MNφGn+1=1Fn+1
55 48 54 syl nM..^NφGn+1=1Fn+1
56 55 impcom φnM..^NGn+1=1Fn+1
57 56 oveq2d φnM..^N1seqM×FnGn+1=1seqM×Fn1Fn+1
58 1cnd φnM..^N1
59 elfzouz nM..^NnM
60 59 adantl φnM..^NnM
61 elfzouz2 nM..^NNn
62 fzss2 NnMnMN
63 61 62 syl nM..^NMnMN
64 63 sselda nM..^NkMnkMN
65 64 2 sylan2 φnM..^NkMnFk
66 65 anassrs φnM..^NkMnFk
67 mulcl kxkx
68 67 adantl φnM..^Nkxkx
69 60 66 68 seqcl φnM..^NseqM×Fn
70 50 eleq1d k=n+1FkFn+1
71 70 imbi2d k=n+1φFkφFn+1
72 2 expcom kMNφFk
73 71 72 vtoclga n+1MNφFn+1
74 48 73 syl nM..^NφFn+1
75 74 impcom φnM..^NFn+1
76 64 3 sylan2 φnM..^NkMnFk0
77 76 anassrs φnM..^NkMnFk0
78 60 66 77 prodfn0 φnM..^NseqM×Fn0
79 50 neeq1d k=n+1Fk0Fn+10
80 79 imbi2d k=n+1φFk0φFn+10
81 3 expcom kMNφFk0
82 80 81 vtoclga n+1MNφFn+10
83 48 82 syl nM..^NφFn+10
84 83 impcom φnM..^NFn+10
85 58 69 58 75 78 84 divmuldivd φnM..^N1seqM×Fn1Fn+1=11seqM×FnFn+1
86 1t1e1 11=1
87 86 oveq1i 11seqM×FnFn+1=1seqM×FnFn+1
88 85 87 eqtrdi φnM..^N1seqM×Fn1Fn+1=1seqM×FnFn+1
89 57 88 eqtrd φnM..^N1seqM×FnGn+1=1seqM×FnFn+1
90 89 3adant3 φnM..^NseqM×Gn=1seqM×Fn1seqM×FnGn+1=1seqM×FnFn+1
91 47 90 eqtrd φnM..^NseqM×Gn=1seqM×FnseqM×GnGn+1=1seqM×FnFn+1
92 seqp1 nMseqM×Gn+1=seqM×GnGn+1
93 59 92 syl nM..^NseqM×Gn+1=seqM×GnGn+1
94 93 3ad2ant2 φnM..^NseqM×Gn=1seqM×FnseqM×Gn+1=seqM×GnGn+1
95 seqp1 nMseqM×Fn+1=seqM×FnFn+1
96 59 95 syl nM..^NseqM×Fn+1=seqM×FnFn+1
97 96 oveq2d nM..^N1seqM×Fn+1=1seqM×FnFn+1
98 97 3ad2ant2 φnM..^NseqM×Gn=1seqM×Fn1seqM×Fn+1=1seqM×FnFn+1
99 91 94 98 3eqtr4d φnM..^NseqM×Gn=1seqM×FnseqM×Gn+1=1seqM×Fn+1
100 99 3exp φnM..^NseqM×Gn=1seqM×FnseqM×Gn+1=1seqM×Fn+1
101 100 com12 nM..^NφseqM×Gn=1seqM×FnseqM×Gn+1=1seqM×Fn+1
102 101 a2d nM..^NφseqM×Gn=1seqM×FnφseqM×Gn+1=1seqM×Fn+1
103 11 16 21 26 45 102 fzind2 NMNφseqM×GN=1seqM×FN
104 6 103 mpcom φseqM×GN=1seqM×FN