Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Product sequences
prodfrec
Next ⟩
prodfdiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodfrec
Description:
The reciprocal of an infinite product.
(Contributed by
Scott Fenton
, 15-Jan-2018)
Ref
Expression
Hypotheses
prodfn0.1
⊢
φ
→
N
∈
ℤ
≥
M
prodfn0.2
⊢
φ
∧
k
∈
M
…
N
→
F
k
∈
ℂ
prodfn0.3
⊢
φ
∧
k
∈
M
…
N
→
F
k
≠
0
prodfrec.4
⊢
φ
∧
k
∈
M
…
N
→
G
k
=
1
F
k
Assertion
prodfrec
⊢
φ
→
seq
M
×
G
N
=
1
seq
M
×
F
N
Proof
Step
Hyp
Ref
Expression
1
prodfn0.1
⊢
φ
→
N
∈
ℤ
≥
M
2
prodfn0.2
⊢
φ
∧
k
∈
M
…
N
→
F
k
∈
ℂ
3
prodfn0.3
⊢
φ
∧
k
∈
M
…
N
→
F
k
≠
0
4
prodfrec.4
⊢
φ
∧
k
∈
M
…
N
→
G
k
=
1
F
k
5
eluzfz2
⊢
N
∈
ℤ
≥
M
→
N
∈
M
…
N
6
1
5
syl
⊢
φ
→
N
∈
M
…
N
7
fveq2
⊢
m
=
M
→
seq
M
×
G
m
=
seq
M
×
G
M
8
fveq2
⊢
m
=
M
→
seq
M
×
F
m
=
seq
M
×
F
M
9
8
oveq2d
⊢
m
=
M
→
1
seq
M
×
F
m
=
1
seq
M
×
F
M
10
7
9
eqeq12d
⊢
m
=
M
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
seq
M
×
G
M
=
1
seq
M
×
F
M
11
10
imbi2d
⊢
m
=
M
→
φ
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
φ
→
seq
M
×
G
M
=
1
seq
M
×
F
M
12
fveq2
⊢
m
=
n
→
seq
M
×
G
m
=
seq
M
×
G
n
13
fveq2
⊢
m
=
n
→
seq
M
×
F
m
=
seq
M
×
F
n
14
13
oveq2d
⊢
m
=
n
→
1
seq
M
×
F
m
=
1
seq
M
×
F
n
15
12
14
eqeq12d
⊢
m
=
n
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
seq
M
×
G
n
=
1
seq
M
×
F
n
16
15
imbi2d
⊢
m
=
n
→
φ
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
φ
→
seq
M
×
G
n
=
1
seq
M
×
F
n
17
fveq2
⊢
m
=
n
+
1
→
seq
M
×
G
m
=
seq
M
×
G
n
+
1
18
fveq2
⊢
m
=
n
+
1
→
seq
M
×
F
m
=
seq
M
×
F
n
+
1
19
18
oveq2d
⊢
m
=
n
+
1
→
1
seq
M
×
F
m
=
1
seq
M
×
F
n
+
1
20
17
19
eqeq12d
⊢
m
=
n
+
1
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
seq
M
×
G
n
+
1
=
1
seq
M
×
F
n
+
1
21
20
imbi2d
⊢
m
=
n
+
1
→
φ
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
φ
→
seq
M
×
G
n
+
1
=
1
seq
M
×
F
n
+
1
22
fveq2
⊢
m
=
N
→
seq
M
×
G
m
=
seq
M
×
G
N
23
fveq2
⊢
m
=
N
→
seq
M
×
F
m
=
seq
M
×
F
N
24
23
oveq2d
⊢
m
=
N
→
1
seq
M
×
F
m
=
1
seq
M
×
F
N
25
22
24
eqeq12d
⊢
m
=
N
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
seq
M
×
G
N
=
1
seq
M
×
F
N
26
25
imbi2d
⊢
m
=
N
→
φ
→
seq
M
×
G
m
=
1
seq
M
×
F
m
↔
φ
→
seq
M
×
G
N
=
1
seq
M
×
F
N
27
eluzfz1
⊢
N
∈
ℤ
≥
M
→
M
∈
M
…
N
28
1
27
syl
⊢
φ
→
M
∈
M
…
N
29
fveq2
⊢
k
=
M
→
G
k
=
G
M
30
fveq2
⊢
k
=
M
→
F
k
=
F
M
31
30
oveq2d
⊢
k
=
M
→
1
F
k
=
1
F
M
32
29
31
eqeq12d
⊢
k
=
M
→
G
k
=
1
F
k
↔
G
M
=
1
F
M
33
32
imbi2d
⊢
k
=
M
→
φ
→
G
k
=
1
F
k
↔
φ
→
G
M
=
1
F
M
34
4
expcom
⊢
k
∈
M
…
N
→
φ
→
G
k
=
1
F
k
35
33
34
vtoclga
⊢
M
∈
M
…
N
→
φ
→
G
M
=
1
F
M
36
28
35
mpcom
⊢
φ
→
G
M
=
1
F
M
37
eluzel2
⊢
N
∈
ℤ
≥
M
→
M
∈
ℤ
38
1
37
syl
⊢
φ
→
M
∈
ℤ
39
seq1
⊢
M
∈
ℤ
→
seq
M
×
G
M
=
G
M
40
38
39
syl
⊢
φ
→
seq
M
×
G
M
=
G
M
41
seq1
⊢
M
∈
ℤ
→
seq
M
×
F
M
=
F
M
42
38
41
syl
⊢
φ
→
seq
M
×
F
M
=
F
M
43
42
oveq2d
⊢
φ
→
1
seq
M
×
F
M
=
1
F
M
44
36
40
43
3eqtr4d
⊢
φ
→
seq
M
×
G
M
=
1
seq
M
×
F
M
45
44
a1i
⊢
N
∈
ℤ
≥
M
→
φ
→
seq
M
×
G
M
=
1
seq
M
×
F
M
46
oveq1
⊢
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
G
n
+
1
=
1
seq
M
×
F
n
G
n
+
1
47
46
3ad2ant3
⊢
φ
∧
n
∈
M
..^
N
∧
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
G
n
+
1
=
1
seq
M
×
F
n
G
n
+
1
48
fzofzp1
⊢
n
∈
M
..^
N
→
n
+
1
∈
M
…
N
49
fveq2
⊢
k
=
n
+
1
→
G
k
=
G
n
+
1
50
fveq2
⊢
k
=
n
+
1
→
F
k
=
F
n
+
1
51
50
oveq2d
⊢
k
=
n
+
1
→
1
F
k
=
1
F
n
+
1
52
49
51
eqeq12d
⊢
k
=
n
+
1
→
G
k
=
1
F
k
↔
G
n
+
1
=
1
F
n
+
1
53
52
imbi2d
⊢
k
=
n
+
1
→
φ
→
G
k
=
1
F
k
↔
φ
→
G
n
+
1
=
1
F
n
+
1
54
53
34
vtoclga
⊢
n
+
1
∈
M
…
N
→
φ
→
G
n
+
1
=
1
F
n
+
1
55
48
54
syl
⊢
n
∈
M
..^
N
→
φ
→
G
n
+
1
=
1
F
n
+
1
56
55
impcom
⊢
φ
∧
n
∈
M
..^
N
→
G
n
+
1
=
1
F
n
+
1
57
56
oveq2d
⊢
φ
∧
n
∈
M
..^
N
→
1
seq
M
×
F
n
G
n
+
1
=
1
seq
M
×
F
n
1
F
n
+
1
58
1cnd
⊢
φ
∧
n
∈
M
..^
N
→
1
∈
ℂ
59
elfzouz
⊢
n
∈
M
..^
N
→
n
∈
ℤ
≥
M
60
59
adantl
⊢
φ
∧
n
∈
M
..^
N
→
n
∈
ℤ
≥
M
61
elfzouz2
⊢
n
∈
M
..^
N
→
N
∈
ℤ
≥
n
62
fzss2
⊢
N
∈
ℤ
≥
n
→
M
…
n
⊆
M
…
N
63
61
62
syl
⊢
n
∈
M
..^
N
→
M
…
n
⊆
M
…
N
64
63
sselda
⊢
n
∈
M
..^
N
∧
k
∈
M
…
n
→
k
∈
M
…
N
65
64
2
sylan2
⊢
φ
∧
n
∈
M
..^
N
∧
k
∈
M
…
n
→
F
k
∈
ℂ
66
65
anassrs
⊢
φ
∧
n
∈
M
..^
N
∧
k
∈
M
…
n
→
F
k
∈
ℂ
67
mulcl
⊢
k
∈
ℂ
∧
x
∈
ℂ
→
k
x
∈
ℂ
68
67
adantl
⊢
φ
∧
n
∈
M
..^
N
∧
k
∈
ℂ
∧
x
∈
ℂ
→
k
x
∈
ℂ
69
60
66
68
seqcl
⊢
φ
∧
n
∈
M
..^
N
→
seq
M
×
F
n
∈
ℂ
70
50
eleq1d
⊢
k
=
n
+
1
→
F
k
∈
ℂ
↔
F
n
+
1
∈
ℂ
71
70
imbi2d
⊢
k
=
n
+
1
→
φ
→
F
k
∈
ℂ
↔
φ
→
F
n
+
1
∈
ℂ
72
2
expcom
⊢
k
∈
M
…
N
→
φ
→
F
k
∈
ℂ
73
71
72
vtoclga
⊢
n
+
1
∈
M
…
N
→
φ
→
F
n
+
1
∈
ℂ
74
48
73
syl
⊢
n
∈
M
..^
N
→
φ
→
F
n
+
1
∈
ℂ
75
74
impcom
⊢
φ
∧
n
∈
M
..^
N
→
F
n
+
1
∈
ℂ
76
64
3
sylan2
⊢
φ
∧
n
∈
M
..^
N
∧
k
∈
M
…
n
→
F
k
≠
0
77
76
anassrs
⊢
φ
∧
n
∈
M
..^
N
∧
k
∈
M
…
n
→
F
k
≠
0
78
60
66
77
prodfn0
⊢
φ
∧
n
∈
M
..^
N
→
seq
M
×
F
n
≠
0
79
50
neeq1d
⊢
k
=
n
+
1
→
F
k
≠
0
↔
F
n
+
1
≠
0
80
79
imbi2d
⊢
k
=
n
+
1
→
φ
→
F
k
≠
0
↔
φ
→
F
n
+
1
≠
0
81
3
expcom
⊢
k
∈
M
…
N
→
φ
→
F
k
≠
0
82
80
81
vtoclga
⊢
n
+
1
∈
M
…
N
→
φ
→
F
n
+
1
≠
0
83
48
82
syl
⊢
n
∈
M
..^
N
→
φ
→
F
n
+
1
≠
0
84
83
impcom
⊢
φ
∧
n
∈
M
..^
N
→
F
n
+
1
≠
0
85
58
69
58
75
78
84
divmuldivd
⊢
φ
∧
n
∈
M
..^
N
→
1
seq
M
×
F
n
1
F
n
+
1
=
1
⋅
1
seq
M
×
F
n
F
n
+
1
86
1t1e1
⊢
1
⋅
1
=
1
87
86
oveq1i
⊢
1
⋅
1
seq
M
×
F
n
F
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
88
85
87
eqtrdi
⊢
φ
∧
n
∈
M
..^
N
→
1
seq
M
×
F
n
1
F
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
89
57
88
eqtrd
⊢
φ
∧
n
∈
M
..^
N
→
1
seq
M
×
F
n
G
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
90
89
3adant3
⊢
φ
∧
n
∈
M
..^
N
∧
seq
M
×
G
n
=
1
seq
M
×
F
n
→
1
seq
M
×
F
n
G
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
91
47
90
eqtrd
⊢
φ
∧
n
∈
M
..^
N
∧
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
G
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
92
seqp1
⊢
n
∈
ℤ
≥
M
→
seq
M
×
G
n
+
1
=
seq
M
×
G
n
G
n
+
1
93
59
92
syl
⊢
n
∈
M
..^
N
→
seq
M
×
G
n
+
1
=
seq
M
×
G
n
G
n
+
1
94
93
3ad2ant2
⊢
φ
∧
n
∈
M
..^
N
∧
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
+
1
=
seq
M
×
G
n
G
n
+
1
95
seqp1
⊢
n
∈
ℤ
≥
M
→
seq
M
×
F
n
+
1
=
seq
M
×
F
n
F
n
+
1
96
59
95
syl
⊢
n
∈
M
..^
N
→
seq
M
×
F
n
+
1
=
seq
M
×
F
n
F
n
+
1
97
96
oveq2d
⊢
n
∈
M
..^
N
→
1
seq
M
×
F
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
98
97
3ad2ant2
⊢
φ
∧
n
∈
M
..^
N
∧
seq
M
×
G
n
=
1
seq
M
×
F
n
→
1
seq
M
×
F
n
+
1
=
1
seq
M
×
F
n
F
n
+
1
99
91
94
98
3eqtr4d
⊢
φ
∧
n
∈
M
..^
N
∧
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
+
1
=
1
seq
M
×
F
n
+
1
100
99
3exp
⊢
φ
→
n
∈
M
..^
N
→
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
+
1
=
1
seq
M
×
F
n
+
1
101
100
com12
⊢
n
∈
M
..^
N
→
φ
→
seq
M
×
G
n
=
1
seq
M
×
F
n
→
seq
M
×
G
n
+
1
=
1
seq
M
×
F
n
+
1
102
101
a2d
⊢
n
∈
M
..^
N
→
φ
→
seq
M
×
G
n
=
1
seq
M
×
F
n
→
φ
→
seq
M
×
G
n
+
1
=
1
seq
M
×
F
n
+
1
103
11
16
21
26
45
102
fzind2
⊢
N
∈
M
…
N
→
φ
→
seq
M
×
G
N
=
1
seq
M
×
F
N
104
6
103
mpcom
⊢
φ
→
seq
M
×
G
N
=
1
seq
M
×
F
N