Metamath Proof Explorer


Theorem prodgt0

Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion prodgt0 A B 0 A 0 < A B 0 < B

Proof

Step Hyp Ref Expression
1 0red A B 0
2 simpl A B A
3 1 2 leloed A B 0 A 0 < A 0 = A
4 simpll A B 0 < A 0 < A B A
5 simplr A B 0 < A 0 < A B B
6 4 5 remulcld A B 0 < A 0 < A B A B
7 simprl A B 0 < A 0 < A B 0 < A
8 7 gt0ne0d A B 0 < A 0 < A B A 0
9 4 8 rereccld A B 0 < A 0 < A B 1 A
10 simprr A B 0 < A 0 < A B 0 < A B
11 recgt0 A 0 < A 0 < 1 A
12 11 ad2ant2r A B 0 < A 0 < A B 0 < 1 A
13 6 9 10 12 mulgt0d A B 0 < A 0 < A B 0 < A B 1 A
14 6 recnd A B 0 < A 0 < A B A B
15 4 recnd A B 0 < A 0 < A B A
16 14 15 8 divrecd A B 0 < A 0 < A B A B A = A B 1 A
17 simpr A B B
18 17 recnd A B B
19 18 adantr A B 0 < A 0 < A B B
20 19 15 8 divcan3d A B 0 < A 0 < A B A B A = B
21 16 20 eqtr3d A B 0 < A 0 < A B A B 1 A = B
22 13 21 breqtrd A B 0 < A 0 < A B 0 < B
23 22 exp32 A B 0 < A 0 < A B 0 < B
24 0re 0
25 24 ltnri ¬ 0 < 0
26 18 mul02d A B 0 B = 0
27 26 breq2d A B 0 < 0 B 0 < 0
28 25 27 mtbiri A B ¬ 0 < 0 B
29 28 pm2.21d A B 0 < 0 B 0 < B
30 oveq1 0 = A 0 B = A B
31 30 breq2d 0 = A 0 < 0 B 0 < A B
32 31 imbi1d 0 = A 0 < 0 B 0 < B 0 < A B 0 < B
33 29 32 syl5ibcom A B 0 = A 0 < A B 0 < B
34 23 33 jaod A B 0 < A 0 = A 0 < A B 0 < B
35 3 34 sylbid A B 0 A 0 < A B 0 < B
36 35 imp32 A B 0 A 0 < A B 0 < B