Description: Lemma for proththd . (Contributed by AV, 4-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | proththd.n | |
|
proththd.k | |
||
proththd.p | |
||
Assertion | proththdlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | proththd.n | |
|
2 | proththd.k | |
|
3 | proththd.p | |
|
4 | 2nn | |
|
5 | 4 | a1i | |
6 | 1 | nnnn0d | |
7 | 5 6 | nnexpcld | |
8 | 2 7 | nnmulcld | |
9 | 8 | peano2nnd | |
10 | 1m1e0 | |
|
11 | 8 | nngt0d | |
12 | 10 11 | eqbrtrid | |
13 | 1red | |
|
14 | 8 | nnred | |
15 | 13 13 14 | ltsubaddd | |
16 | 12 15 | mpbid | |
17 | 8 | nncnd | |
18 | pncan1 | |
|
19 | 17 18 | syl | |
20 | 19 | oveq1d | |
21 | 2z | |
|
22 | 21 | a1i | |
23 | 2 | nnzd | |
24 | 7 | nnzd | |
25 | 22 23 24 | 3jca | |
26 | iddvdsexp | |
|
27 | 22 1 26 | syl2anc | |
28 | dvdsmultr2 | |
|
29 | 25 27 28 | sylc | |
30 | nndivdvds | |
|
31 | 8 5 30 | syl2anc | |
32 | 29 31 | mpbid | |
33 | 20 32 | eqeltrd | |
34 | 9 16 33 | 3jca | |
35 | eleq1 | |
|
36 | breq2 | |
|
37 | oveq1 | |
|
38 | 37 | oveq1d | |
39 | 38 | eleq1d | |
40 | 35 36 39 | 3anbi123d | |
41 | 34 40 | syl5ibrcom | |
42 | 3 41 | mpd | |