Metamath Proof Explorer


Theorem psrgrpOLD

Description: Obsolete proof of psrgrp as of 7-Feb-2025. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
Assertion psrgrpOLD φSGrp

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 eqidd φBaseS=BaseS
5 eqidd φ+S=+S
6 eqid BaseS=BaseS
7 eqid +S=+S
8 3 3ad2ant1 φxBaseSyBaseSRGrp
9 simp2 φxBaseSyBaseSxBaseS
10 simp3 φxBaseSyBaseSyBaseS
11 1 6 7 8 9 10 psraddcl φxBaseSyBaseSx+SyBaseS
12 ovex 0IV
13 12 rabex f0I|f-1FinV
14 13 a1i φxBaseSyBaseSzBaseSf0I|f-1FinV
15 eqid BaseR=BaseR
16 eqid f0I|f-1Fin=f0I|f-1Fin
17 simpr1 φxBaseSyBaseSzBaseSxBaseS
18 1 15 16 6 17 psrelbas φxBaseSyBaseSzBaseSx:f0I|f-1FinBaseR
19 simpr2 φxBaseSyBaseSzBaseSyBaseS
20 1 15 16 6 19 psrelbas φxBaseSyBaseSzBaseSy:f0I|f-1FinBaseR
21 simpr3 φxBaseSyBaseSzBaseSzBaseS
22 1 15 16 6 21 psrelbas φxBaseSyBaseSzBaseSz:f0I|f-1FinBaseR
23 3 adantr φxBaseSyBaseSzBaseSRGrp
24 eqid +R=+R
25 15 24 grpass RGrprBaseRsBaseRtBaseRr+Rs+Rt=r+Rs+Rt
26 23 25 sylan φxBaseSyBaseSzBaseSrBaseRsBaseRtBaseRr+Rs+Rt=r+Rs+Rt
27 14 18 20 22 26 caofass φxBaseSyBaseSzBaseSx+Rfy+Rfz=x+Rfy+Rfz
28 1 6 24 7 17 19 psradd φxBaseSyBaseSzBaseSx+Sy=x+Rfy
29 28 oveq1d φxBaseSyBaseSzBaseSx+Sy+Rfz=x+Rfy+Rfz
30 1 6 24 7 19 21 psradd φxBaseSyBaseSzBaseSy+Sz=y+Rfz
31 30 oveq2d φxBaseSyBaseSzBaseSx+Rfy+Sz=x+Rfy+Rfz
32 27 29 31 3eqtr4d φxBaseSyBaseSzBaseSx+Sy+Rfz=x+Rfy+Sz
33 11 3adant3r3 φxBaseSyBaseSzBaseSx+SyBaseS
34 1 6 24 7 33 21 psradd φxBaseSyBaseSzBaseSx+Sy+Sz=x+Sy+Rfz
35 1 6 7 23 19 21 psraddcl φxBaseSyBaseSzBaseSy+SzBaseS
36 1 6 24 7 17 35 psradd φxBaseSyBaseSzBaseSx+Sy+Sz=x+Rfy+Sz
37 32 34 36 3eqtr4d φxBaseSyBaseSzBaseSx+Sy+Sz=x+Sy+Sz
38 eqid 0R=0R
39 1 2 3 16 38 6 psr0cl φf0I|f-1Fin×0RBaseS
40 2 adantr φxBaseSIV
41 3 adantr φxBaseSRGrp
42 simpr φxBaseSxBaseS
43 1 40 41 16 38 6 7 42 psr0lid φxBaseSf0I|f-1Fin×0R+Sx=x
44 eqid invgR=invgR
45 1 40 41 16 44 6 42 psrnegcl φxBaseSinvgRxBaseS
46 1 40 41 16 44 6 42 38 7 psrlinv φxBaseSinvgRx+Sx=f0I|f-1Fin×0R
47 4 5 11 37 39 43 45 46 isgrpd φSGrp