Metamath Proof Explorer


Theorem psrlinv

Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
psrnegcl.d D=f0I|f-1Fin
psrnegcl.i N=invgR
psrnegcl.b B=BaseS
psrnegcl.z φXB
psrlinv.o 0˙=0R
psrlinv.p +˙=+S
Assertion psrlinv φNX+˙X=D×0˙

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 psrnegcl.d D=f0I|f-1Fin
5 psrnegcl.i N=invgR
6 psrnegcl.b B=BaseS
7 psrnegcl.z φXB
8 psrlinv.o 0˙=0R
9 psrlinv.p +˙=+S
10 ovex 0IV
11 4 10 rabex2 DV
12 11 a1i φDV
13 fvexd φxDNXxV
14 eqid BaseR=BaseR
15 1 14 4 6 7 psrelbas φX:DBaseR
16 15 ffvelcdmda φxDXxBaseR
17 15 feqmptd φX=xDXx
18 14 5 3 grpinvf1o φN:BaseR1-1 ontoBaseR
19 f1of N:BaseR1-1 ontoBaseRN:BaseRBaseR
20 18 19 syl φN:BaseRBaseR
21 20 feqmptd φN=yBaseRNy
22 fveq2 y=XxNy=NXx
23 16 17 21 22 fmptco φNX=xDNXx
24 12 13 16 23 17 offval2 φNX+RfX=xDNXx+RXx
25 eqid +R=+R
26 1 2 3 4 5 6 7 psrnegcl φNXB
27 1 6 25 9 26 7 psradd φNX+˙X=NX+RfX
28 fconstmpt D×0˙=xD0˙
29 14 25 8 5 grplinv RGrpXxBaseRNXx+RXx=0˙
30 3 16 29 syl2an2r φxDNXx+RXx=0˙
31 30 mpteq2dva φxDNXx+RXx=xD0˙
32 28 31 eqtr4id φD×0˙=xDNXx+RXx
33 24 27 32 3eqtr4d φNX+˙X=D×0˙