Metamath Proof Explorer


Theorem psrplusg

Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses psrplusg.s S=ImPwSerR
psrplusg.b B=BaseS
psrplusg.a +˙=+R
psrplusg.p ˙=+S
Assertion psrplusg ˙=f+˙B×B

Proof

Step Hyp Ref Expression
1 psrplusg.s S=ImPwSerR
2 psrplusg.b B=BaseS
3 psrplusg.a +˙=+R
4 psrplusg.p ˙=+S
5 eqid BaseR=BaseR
6 eqid R=R
7 eqid TopOpenR=TopOpenR
8 eqid h0I|h-1Fin=h0I|h-1Fin
9 simpl IVRVIV
10 1 5 8 2 9 psrbas IVRVB=BaseRh0I|h-1Fin
11 eqid f+˙B×B=f+˙B×B
12 eqid fB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfx=fB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfx
13 eqid xBaseR,fBh0I|h-1Fin×xRff=xBaseR,fBh0I|h-1Fin×xRff
14 eqidd IVRV𝑡h0I|h-1Fin×TopOpenR=𝑡h0I|h-1Fin×TopOpenR
15 simpr IVRVRV
16 1 5 3 6 7 8 10 11 12 13 14 9 15 psrval IVRVS=BasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
17 16 fveq2d IVRV+S=+BasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
18 2 fvexi BV
19 18 18 xpex B×BV
20 ofexg B×BVf+˙B×BV
21 psrvalstr BasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenRStruct19
22 plusgid +𝑔=Slot+ndx
23 snsstp2 +ndxf+˙B×BBasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfx
24 ssun1 BasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxBasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
25 23 24 sstri +ndxf+˙B×BBasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
26 21 22 25 strfv f+˙B×BVf+˙B×B=+BasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
27 19 20 26 mp2b f+˙B×B=+BasendxB+ndxf+˙B×BndxfB,gBkh0I|h-1FinRxyh0I|h-1Fin|yfkfxRgkfxScalarndxRndxxBaseR,fBh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
28 17 4 27 3eqtr4g IVRV˙=f+˙B×B
29 reldmpsr ReldommPwSer
30 29 ovprc ¬IVRVImPwSerR=
31 1 30 eqtrid ¬IVRVS=
32 31 fveq2d ¬IVRV+S=+
33 22 str0 =+
34 32 4 33 3eqtr4g ¬IVRV˙=
35 31 fveq2d ¬IVRVBaseS=Base
36 base0 =Base
37 35 2 36 3eqtr4g ¬IVRVB=
38 37 xpeq2d ¬IVRVB×B=B×
39 xp0 B×=
40 38 39 eqtrdi ¬IVRVB×B=
41 40 reseq2d ¬IVRVf+˙B×B=f+˙
42 res0 f+˙=
43 41 42 eqtrdi ¬IVRVf+˙B×B=
44 34 43 eqtr4d ¬IVRV˙=f+˙B×B
45 28 44 pm2.61i ˙=f+˙B×B