Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrplusgpropd.b1 | |
|
psrplusgpropd.b2 | |
||
psrplusgpropd.p | |
||
Assertion | psrplusgpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrplusgpropd.b1 | |
|
2 | psrplusgpropd.b2 | |
|
3 | psrplusgpropd.p | |
|
4 | simpl1 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | simp2 | |
|
10 | 5 6 7 8 9 | psrelbas | |
11 | 10 | ffvelcdmda | |
12 | 4 1 | syl | |
13 | 11 12 | eleqtrrd | |
14 | simp3 | |
|
15 | 5 6 7 8 14 | psrelbas | |
16 | 15 | ffvelcdmda | |
17 | 16 12 | eleqtrrd | |
18 | 3 | oveqrspc2v | |
19 | 4 13 17 18 | syl12anc | |
20 | 19 | mpteq2dva | |
21 | 10 | ffnd | |
22 | 15 | ffnd | |
23 | ovex | |
|
24 | 23 | rabex | |
25 | 24 | a1i | |
26 | inidm | |
|
27 | eqidd | |
|
28 | eqidd | |
|
29 | 21 22 25 25 26 27 28 | offval | |
30 | 21 22 25 25 26 27 28 | offval | |
31 | 20 29 30 | 3eqtr4d | |
32 | 31 | mpoeq3dva | |
33 | 1 2 | eqtr3d | |
34 | 33 | psrbaspropd | |
35 | mpoeq12 | |
|
36 | 34 34 35 | syl2anc | |
37 | 32 36 | eqtrd | |
38 | ofmres | |
|
39 | ofmres | |
|
40 | 37 38 39 | 3eqtr4g | |
41 | eqid | |
|
42 | eqid | |
|
43 | 5 8 41 42 | psrplusg | |
44 | eqid | |
|
45 | eqid | |
|
46 | eqid | |
|
47 | eqid | |
|
48 | 44 45 46 47 | psrplusg | |
49 | 40 43 48 | 3eqtr4g | |