Metamath Proof Explorer


Theorem psrplusgpropd

Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses psrplusgpropd.b1 φB=BaseR
psrplusgpropd.b2 φB=BaseS
psrplusgpropd.p φxByBx+Ry=x+Sy
Assertion psrplusgpropd φ+ImPwSerR=+ImPwSerS

Proof

Step Hyp Ref Expression
1 psrplusgpropd.b1 φB=BaseR
2 psrplusgpropd.b2 φB=BaseS
3 psrplusgpropd.p φxByBx+Ry=x+Sy
4 simpl1 φaBaseImPwSerRbBaseImPwSerRdc0I|c-1Finφ
5 eqid ImPwSerR=ImPwSerR
6 eqid BaseR=BaseR
7 eqid c0I|c-1Fin=c0I|c-1Fin
8 eqid BaseImPwSerR=BaseImPwSerR
9 simp2 φaBaseImPwSerRbBaseImPwSerRaBaseImPwSerR
10 5 6 7 8 9 psrelbas φaBaseImPwSerRbBaseImPwSerRa:c0I|c-1FinBaseR
11 10 ffvelcdmda φaBaseImPwSerRbBaseImPwSerRdc0I|c-1FinadBaseR
12 4 1 syl φaBaseImPwSerRbBaseImPwSerRdc0I|c-1FinB=BaseR
13 11 12 eleqtrrd φaBaseImPwSerRbBaseImPwSerRdc0I|c-1FinadB
14 simp3 φaBaseImPwSerRbBaseImPwSerRbBaseImPwSerR
15 5 6 7 8 14 psrelbas φaBaseImPwSerRbBaseImPwSerRb:c0I|c-1FinBaseR
16 15 ffvelcdmda φaBaseImPwSerRbBaseImPwSerRdc0I|c-1FinbdBaseR
17 16 12 eleqtrrd φaBaseImPwSerRbBaseImPwSerRdc0I|c-1FinbdB
18 3 oveqrspc2v φadBbdBad+Rbd=ad+Sbd
19 4 13 17 18 syl12anc φaBaseImPwSerRbBaseImPwSerRdc0I|c-1Finad+Rbd=ad+Sbd
20 19 mpteq2dva φaBaseImPwSerRbBaseImPwSerRdc0I|c-1Finad+Rbd=dc0I|c-1Finad+Sbd
21 10 ffnd φaBaseImPwSerRbBaseImPwSerRaFnc0I|c-1Fin
22 15 ffnd φaBaseImPwSerRbBaseImPwSerRbFnc0I|c-1Fin
23 ovex 0IV
24 23 rabex c0I|c-1FinV
25 24 a1i φaBaseImPwSerRbBaseImPwSerRc0I|c-1FinV
26 inidm c0I|c-1Finc0I|c-1Fin=c0I|c-1Fin
27 eqidd φaBaseImPwSerRbBaseImPwSerRdc0I|c-1Finad=ad
28 eqidd φaBaseImPwSerRbBaseImPwSerRdc0I|c-1Finbd=bd
29 21 22 25 25 26 27 28 offval φaBaseImPwSerRbBaseImPwSerRa+Rfb=dc0I|c-1Finad+Rbd
30 21 22 25 25 26 27 28 offval φaBaseImPwSerRbBaseImPwSerRa+Sfb=dc0I|c-1Finad+Sbd
31 20 29 30 3eqtr4d φaBaseImPwSerRbBaseImPwSerRa+Rfb=a+Sfb
32 31 mpoeq3dva φaBaseImPwSerR,bBaseImPwSerRa+Rfb=aBaseImPwSerR,bBaseImPwSerRa+Sfb
33 1 2 eqtr3d φBaseR=BaseS
34 33 psrbaspropd φBaseImPwSerR=BaseImPwSerS
35 mpoeq12 BaseImPwSerR=BaseImPwSerSBaseImPwSerR=BaseImPwSerSaBaseImPwSerR,bBaseImPwSerRa+Sfb=aBaseImPwSerS,bBaseImPwSerSa+Sfb
36 34 34 35 syl2anc φaBaseImPwSerR,bBaseImPwSerRa+Sfb=aBaseImPwSerS,bBaseImPwSerSa+Sfb
37 32 36 eqtrd φaBaseImPwSerR,bBaseImPwSerRa+Rfb=aBaseImPwSerS,bBaseImPwSerSa+Sfb
38 ofmres f+RBaseImPwSerR×BaseImPwSerR=aBaseImPwSerR,bBaseImPwSerRa+Rfb
39 ofmres f+SBaseImPwSerS×BaseImPwSerS=aBaseImPwSerS,bBaseImPwSerSa+Sfb
40 37 38 39 3eqtr4g φf+RBaseImPwSerR×BaseImPwSerR=f+SBaseImPwSerS×BaseImPwSerS
41 eqid +R=+R
42 eqid +ImPwSerR=+ImPwSerR
43 5 8 41 42 psrplusg +ImPwSerR=f+RBaseImPwSerR×BaseImPwSerR
44 eqid ImPwSerS=ImPwSerS
45 eqid BaseImPwSerS=BaseImPwSerS
46 eqid +S=+S
47 eqid +ImPwSerS=+ImPwSerS
48 44 45 46 47 psrplusg +ImPwSerS=f+SBaseImPwSerS×BaseImPwSerS
49 40 43 48 3eqtr4g φ+ImPwSerR=+ImPwSerS