| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrplusgpropd.b1 |  | 
						
							| 2 |  | psrplusgpropd.b2 |  | 
						
							| 3 |  | psrplusgpropd.p |  | 
						
							| 4 |  | simpl1 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 | 5 6 7 8 9 | psrelbas |  | 
						
							| 11 | 10 | ffvelcdmda |  | 
						
							| 12 | 4 1 | syl |  | 
						
							| 13 | 11 12 | eleqtrrd |  | 
						
							| 14 |  | simp3 |  | 
						
							| 15 | 5 6 7 8 14 | psrelbas |  | 
						
							| 16 | 15 | ffvelcdmda |  | 
						
							| 17 | 16 12 | eleqtrrd |  | 
						
							| 18 | 3 | oveqrspc2v |  | 
						
							| 19 | 4 13 17 18 | syl12anc |  | 
						
							| 20 | 19 | mpteq2dva |  | 
						
							| 21 | 10 | ffnd |  | 
						
							| 22 | 15 | ffnd |  | 
						
							| 23 |  | ovex |  | 
						
							| 24 | 23 | rabex |  | 
						
							| 25 | 24 | a1i |  | 
						
							| 26 |  | inidm |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 |  | eqidd |  | 
						
							| 29 | 21 22 25 25 26 27 28 | offval |  | 
						
							| 30 | 21 22 25 25 26 27 28 | offval |  | 
						
							| 31 | 20 29 30 | 3eqtr4d |  | 
						
							| 32 | 31 | mpoeq3dva |  | 
						
							| 33 | 1 2 | eqtr3d |  | 
						
							| 34 | 33 | psrbaspropd |  | 
						
							| 35 |  | mpoeq12 |  | 
						
							| 36 | 34 34 35 | syl2anc |  | 
						
							| 37 | 32 36 | eqtrd |  | 
						
							| 38 |  | ofmres |  | 
						
							| 39 |  | ofmres |  | 
						
							| 40 | 37 38 39 | 3eqtr4g |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 5 8 41 42 | psrplusg |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 44 45 46 47 | psrplusg |  | 
						
							| 49 | 40 43 48 | 3eqtr4g |  |