Step |
Hyp |
Ref |
Expression |
1 |
|
ptpjcn.1 |
|
2 |
|
ptpjcn.2 |
|
3 |
2
|
ptuni |
|
4 |
3
|
3adant3 |
|
5 |
1 4
|
eqtr4id |
|
6 |
5
|
mpteq1d |
|
7 |
|
pttop |
|
8 |
7
|
3adant3 |
|
9 |
2 8
|
eqeltrid |
|
10 |
|
ffvelrn |
|
11 |
10
|
3adant1 |
|
12 |
|
vex |
|
13 |
12
|
elixp |
|
14 |
13
|
simprbi |
|
15 |
|
fveq2 |
|
16 |
|
fveq2 |
|
17 |
16
|
unieqd |
|
18 |
15 17
|
eleq12d |
|
19 |
18
|
rspcva |
|
20 |
14 19
|
sylan2 |
|
21 |
20
|
3ad2antl3 |
|
22 |
21
|
fmpttd |
|
23 |
5
|
feq2d |
|
24 |
22 23
|
mpbird |
|
25 |
|
eqid |
|
26 |
25
|
ptbas |
|
27 |
|
bastg |
|
28 |
26 27
|
syl |
|
29 |
|
ffn |
|
30 |
25
|
ptval |
|
31 |
2 30
|
eqtrid |
|
32 |
29 31
|
sylan2 |
|
33 |
28 32
|
sseqtrrd |
|
34 |
33
|
adantr |
|
35 |
|
eqid |
|
36 |
25 35
|
ptpjpre2 |
|
37 |
34 36
|
sseldd |
|
38 |
37
|
expr |
|
39 |
38
|
ralrimiv |
|
40 |
39
|
3impa |
|
41 |
24 40
|
jca |
|
42 |
|
eqid |
|
43 |
1 42
|
iscn2 |
|
44 |
9 11 41 43
|
syl21anbrc |
|
45 |
6 44
|
eqeltrd |
|