| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptpjcn.1 |  | 
						
							| 2 |  | ptpjcn.2 |  | 
						
							| 3 | 2 | ptuni |  | 
						
							| 4 | 3 | 3adant3 |  | 
						
							| 5 | 1 4 | eqtr4id |  | 
						
							| 6 | 5 | mpteq1d |  | 
						
							| 7 |  | pttop |  | 
						
							| 8 | 7 | 3adant3 |  | 
						
							| 9 | 2 8 | eqeltrid |  | 
						
							| 10 |  | ffvelcdm |  | 
						
							| 11 | 10 | 3adant1 |  | 
						
							| 12 |  | vex |  | 
						
							| 13 | 12 | elixp |  | 
						
							| 14 | 13 | simprbi |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 |  | fveq2 |  | 
						
							| 17 | 16 | unieqd |  | 
						
							| 18 | 15 17 | eleq12d |  | 
						
							| 19 | 18 | rspcva |  | 
						
							| 20 | 14 19 | sylan2 |  | 
						
							| 21 | 20 | 3ad2antl3 |  | 
						
							| 22 | 21 | fmpttd |  | 
						
							| 23 | 5 | feq2d |  | 
						
							| 24 | 22 23 | mpbird |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 | ptbas |  | 
						
							| 27 |  | bastg |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 |  | ffn |  | 
						
							| 30 | 25 | ptval |  | 
						
							| 31 | 2 30 | eqtrid |  | 
						
							| 32 | 29 31 | sylan2 |  | 
						
							| 33 | 28 32 | sseqtrrd |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 25 35 | ptpjpre2 |  | 
						
							| 37 | 34 36 | sseldd |  | 
						
							| 38 | 37 | expr |  | 
						
							| 39 | 38 | ralrimiv |  | 
						
							| 40 | 39 | 3impa |  | 
						
							| 41 | 24 40 | jca |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 1 42 | iscn2 |  | 
						
							| 44 | 9 11 41 43 | syl21anbrc |  | 
						
							| 45 | 6 44 | eqeltrd |  |