Metamath Proof Explorer


Theorem ptuni2

Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
Assertion ptuni2 AVF:ATopkAFk=B

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 1 ptbasid AVF:ATopkAFkB
3 elssuni kAFkBkAFkB
4 2 3 syl AVF:ATopkAFkB
5 simpr2 AVF:ATopgFnAyAgyFyzFinyAzgy=FyyAgyFy
6 elssuni gyFygyFy
7 6 ralimi yAgyFyyAgyFy
8 ss2ixp yAgyFyyAgyyAFy
9 5 7 8 3syl AVF:ATopgFnAyAgyFyzFinyAzgy=FyyAgyyAFy
10 fveq2 y=kFy=Fk
11 10 unieqd y=kFy=Fk
12 11 cbvixpv yAFy=kAFk
13 9 12 sseqtrdi AVF:ATopgFnAyAgyFyzFinyAzgy=FyyAgykAFk
14 velpw x𝒫kAFkxkAFk
15 sseq1 x=yAgyxkAFkyAgykAFk
16 14 15 bitrid x=yAgyx𝒫kAFkyAgykAFk
17 13 16 syl5ibrcom AVF:ATopgFnAyAgyFyzFinyAzgy=Fyx=yAgyx𝒫kAFk
18 17 expimpd AVF:ATopgFnAyAgyFyzFinyAzgy=Fyx=yAgyx𝒫kAFk
19 18 exlimdv AVF:ATopggFnAyAgyFyzFinyAzgy=Fyx=yAgyx𝒫kAFk
20 19 abssdv AVF:ATopx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy𝒫kAFk
21 1 20 eqsstrid AVF:ATopB𝒫kAFk
22 sspwuni B𝒫kAFkBkAFk
23 21 22 sylib AVF:ATopBkAFk
24 4 23 eqssd AVF:ATopkAFk=B