Metamath Proof Explorer


Theorem pwsexpg

Description: Value of a group exponentiation in a structure power. Compare pwsmulg . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses pwsexpg.y Y=R𝑠I
pwsexpg.b B=BaseY
pwsexpg.m M=mulGrpY
pwsexpg.t T=mulGrpR
pwsexpg.s ˙=M
pwsexpg.g ·˙=T
pwsexpg.r φRRing
pwsexpg.i φIV
pwsexpg.n φN0
pwsexpg.x φXB
pwsexpg.a φAI
Assertion pwsexpg φN˙XA=N·˙XA

Proof

Step Hyp Ref Expression
1 pwsexpg.y Y=R𝑠I
2 pwsexpg.b B=BaseY
3 pwsexpg.m M=mulGrpY
4 pwsexpg.t T=mulGrpR
5 pwsexpg.s ˙=M
6 pwsexpg.g ·˙=T
7 pwsexpg.r φRRing
8 pwsexpg.i φIV
9 pwsexpg.n φN0
10 pwsexpg.x φXB
11 pwsexpg.a φAI
12 1 2 3 4 7 8 11 pwspjmhmmgpd φxBxAMMndHomT
13 3 2 mgpbas B=BaseM
14 13 5 6 mhmmulg xBxAMMndHomTN0XBxBxAN˙X=N·˙xBxAX
15 12 9 10 14 syl3anc φxBxAN˙X=N·˙xBxAX
16 1 pwsring RRingIVYRing
17 7 8 16 syl2anc φYRing
18 3 ringmgp YRingMMnd
19 17 18 syl φMMnd
20 13 5 19 9 10 mulgnn0cld φN˙XB
21 fveq1 x=N˙XxA=N˙XA
22 eqid xBxA=xBxA
23 fvex N˙XAV
24 21 22 23 fvmpt N˙XBxBxAN˙X=N˙XA
25 20 24 syl φxBxAN˙X=N˙XA
26 fveq1 x=XxA=XA
27 fvex XAV
28 26 22 27 fvmpt XBxBxAX=XA
29 10 28 syl φxBxAX=XA
30 29 oveq2d φN·˙xBxAX=N·˙XA
31 15 25 30 3eqtr3d φN˙XA=N·˙XA